Enrico Bonino

was born in the Province of Bergamo in 1966 and received his degree in Geology from the Department of Earth Sciences at the University of Genoa. He currently lives in Belgium where he works as a cartographer specialized in the use of satellite imaging and geographic information systems (GIS). His proficiency in the use of digital-image processing, a healthy dose of artistic talent, and a good knowledge of desktop publishing software have provided him with the skills he needed to create graphics, including dozens of posters and illustrations, for all of the displays at the Back to the Past Museum in Cancún. In addition to his passion for trilobites, Enrico is particularly interested in the life forms that developed during the Precambrian.

Carlo Kier

was born in Milan in 1961. He holds a degree in law and is currently the director of the Azul Hotel chain. He lives in Cancún, Mexico, where he is involved in efforts to preserve the marine environment. At the age of sixteen, he began a long collaboration with Milan’s Museum of Natural History, but it wasn’t until 1970 that his true passion for trilobites began to take shape. Today, that passion has become the impetus behind one of the most important collections in the world. His tireless field research across the globe and his involvement with professionals in paleontology have given him the opportunity to describe new species of trilobites and other arthropods. His personal determination and the development of the Azul Sensatori hotel complex finally brought his dream to fruition: the Back to the Past Museum, the world’s first museum dedicated entirely to trilobites.

With regard to human interest in fossils, trilobites may rank second only to dinosaurs. Having studied trilobites most of my life, the English version of The Back to the Past Museum Guide to TRILOBITES by Enrico Bonino and Carlo Kier is a pleasant treat. I am captivated by the abundant color images of more than 600 diverse species of trilobites, mostly from the authors’ own collections. Specimens amply represent famous trilobite localities around the world and typify forms from most of the 250-million-year history of trilobites. Numerous specimens are masterpieces of modern professional preparation.

Richard A. Robison

Professor Emeritus
University of Kansas
The Back to the Past Museum Guide to
Trilobites

Enrico Bonino
Carlo Kier

English translation by Wendell Ricketts
The Back to the Past Museum Guide to Trilobites / Enrico Bonino & Carlo Kier.
Includes bibliographical references and indices.

This volume, the enclosed poster Systematic relationship and Chronological extent of the nine Tri-
lobite orders (Bonino 2009), and the thematic posters on display at the Back to the Past Museum are
available from the authors or through the Museum’s web site http://www.backtothepast.com.mx

No portion of this book may be reproduced or transmitted in any form or by means of any support,
whether electronic, mechanical, or other, without the written permission of the authors.

First Edition 2010
English translation by Wendell Ricketts

Casa Editrice Marna s.c.
Via Santuario, 5 - 23890 Barzago (Lecco, Italy)
Tel. +39 031.874415 - Fax +39 031.874417
E-mail: marna@marna.it
Internet: www.marna.it

EAN:

Printed by:

Front cover: Death assemblage of Norwoodia sp., Cambrian, Weeks Formation, Millard County, Utah (USA).

Lower panels, from left to right: Deiracephalus aster and Olenoides sp. from the Cambrian of the Weeks Formation, Mill-
ard County, Utah (USA); Bristolia insolens and Bristolia fragilis, Cambrian, Carrara Formation, from near Emigrant Pass,
Nevada (USA).

Back cover: A fossiliferous outcrop of Lower Cambrian marls of the Carrara Formation, Nevada (USA).
Olenoides "abbotti"
Middle Cambrian
Whirlwind Formation - Drum Mountains - Utah - USA
Photo courtesy of Dave Comfort
To my parents, in whose presence I always encountered support and enthusiasm; to my wife, whose love carried me through long working evenings; and to my son, for the man he will one day become.

(E.B.)

To my parents, Vittorio and Marinella, and to my wife, Alice, for having nourished my passion even to the farthest corners of our planet.

(C.K.)
The Back to the Past Museum Guide to
TRILOBITES

Enrico Bonino
Carlo Kier

with contributions by Jake Skabelund; Dave Comfort;
Dr. Richard A. Robison; Dr. Gian-Luigi Pillola; Jih-Pai Lin, Ph.D.;
Allart van Viersen, Ph.D.; Sam ‘Ohu Gon III, Ph.D.; and Arvid J. Aase.
Cruziana omanica, probable trilobite track.
Upper Cambrian (Chagashanian)
Al Bashair Formation, Aidan Group, Huqf, Oman
Photo courtesy of Ru Smith
Table of Contents

<table>
<thead>
<tr>
<th>Acknowledgements</th>
<th>XIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>1</td>
</tr>
<tr>
<td>Preface</td>
<td>2</td>
</tr>
<tr>
<td>Presentation by Dr. Maurizio Gnoli</td>
<td>4</td>
</tr>
<tr>
<td>Presentation by Sam ‘Ohu Gon III, Ph.D.</td>
<td>5</td>
</tr>
<tr>
<td>The Back to the Past Museum</td>
<td>6</td>
</tr>
<tr>
<td>Some Notes on Classification and Terminology</td>
<td>9</td>
</tr>
<tr>
<td>Cladistics</td>
<td>10</td>
</tr>
<tr>
<td>TRILOBITA</td>
<td>12</td>
</tr>
<tr>
<td>General Introduction</td>
<td>13</td>
</tr>
<tr>
<td>ORIGINS</td>
<td>20</td>
</tr>
<tr>
<td>TRILOBITE MORPHOLOGY</td>
<td>28</td>
</tr>
<tr>
<td>Composition of the Exoskeleton</td>
<td>29</td>
</tr>
<tr>
<td>Trilobites in Thin Section</td>
<td>31</td>
</tr>
<tr>
<td>Cephalon</td>
<td>35</td>
</tr>
<tr>
<td>Glabella</td>
<td>35</td>
</tr>
<tr>
<td>Suture lines</td>
<td>36</td>
</tr>
<tr>
<td>Cephalic spines</td>
<td>38</td>
</tr>
<tr>
<td>Hypostome</td>
<td>39</td>
</tr>
<tr>
<td>Rostral plate</td>
<td>41</td>
</tr>
<tr>
<td>Eyes</td>
<td>42</td>
</tr>
<tr>
<td>Holochroal Eyes</td>
<td>43</td>
</tr>
<tr>
<td>Schizochroal Eyes</td>
<td>45</td>
</tr>
<tr>
<td>Lens Structure</td>
<td>46</td>
</tr>
<tr>
<td>Functional Morphology of the Eyes</td>
<td>48</td>
</tr>
<tr>
<td>Blindness</td>
<td>50</td>
</tr>
<tr>
<td>Thorax</td>
<td>55</td>
</tr>
<tr>
<td>Pygidium</td>
<td>62</td>
</tr>
<tr>
<td>Exoskeletal Sculpturing (Prosopon)</td>
<td>66</td>
</tr>
<tr>
<td>Domes and Nodes</td>
<td>66</td>
</tr>
<tr>
<td>Tubercles</td>
<td>66</td>
</tr>
<tr>
<td>Spines</td>
<td>67</td>
</tr>
<tr>
<td>Pits and Depressions</td>
<td>68</td>
</tr>
<tr>
<td>Ridges or Terracing</td>
<td>70</td>
</tr>
<tr>
<td>Structure of Trilobite Soft Parts</td>
<td>71</td>
</tr>
<tr>
<td>Ontogenesis</td>
<td>77</td>
</tr>
<tr>
<td>Exuviation (Molting)</td>
<td>79</td>
</tr>
<tr>
<td>Morphological Anomalies and Predation</td>
<td>85</td>
</tr>
</tbody>
</table>
Predation 85
 Predators and Prey 87
 “Functional” Deformities 94

Paleoecology 96

Morphotypes 97
 Pelagic Species 97
 Phacomorphs 97
 Illaenomorphs 98
 Atheloptic Species 98
 Species with Marginal Cephalic Spines 98
 Miniaturization 98
 Species with Cephalic perforations 98
 Olenimorphs 98

Habitat and Way of Life 100
 Pelagic Species (Zooplankton Eaters) 100
 Planktonic Species 101
 Benthic Species 103

Posture 104

Feeding 106
 Predators and Necrophages 106
 Particle Feeders 108
 Plankton Feeders 108
 Symbiosis in Olenimorphs? 109
 Filter Feeders 109

Ichnofossils 111

Taphonomy 117

Faunal Provincialism 124

The Significance of Faunal Provincialism for Paleontology 125

Faunal Provincialism and Biostratigraphy 125
 Provincialism as a Function of Climate 126
 Provincialism as a Function of Living Depth and Dispersion 126
 Cambrian 127
 Ordovician 128
 Silurian 129
 Devonian 130
 Carboniferous and Permian 131

Trilobites in Italy 133

Sardinia 135

Friuli 152

Sicily 155
TRILOBITE CLASSIFICATION

Order Agnostida 161
 Suborder AGNOSTINA 162
 Suborder EODISCAINA 163

Order Redlichida 164
 Suborder OLENNELINA 165
 Suborder REDLICHINA 166

Order Corynexoichida 167
 Suborder ILLAENINA 168
 Suborder CORYNEXOCHINA 169
 Suborder LEIOSTEGIINA 170

Order Lichida / Odontopleurida 171
 Superfamily LICHOIDEA (Order Lichida?) 172
 Superfamily ODONTOPLEUROIDEA (Order Odontopleurida ?) 173
 Superfamily DAMESELLIOIDEA (Order Odontopleurida ?) 174

Order Phacopida 175
 Suborder CALYMENINA 176
 Suborder PHACOPINA 177
 Superfamily PHACOPOIDEA 178
 Superfamily DALMANITOIDEA 179
 Superfamily ACASTOIDEA 180
 Suborder CHEIRURINA 181

Subclass Libristoma 182
 Evolution of the Hypostome 182

Order Proetida 184
 Superfamily PROETOIDEA 186
 Superfamily AULACOPLEUROIDEA 187
 Superfamily BATHYUROIDEA 188

Order Asaphida 189
 Superfamily ANOMOCAROIDEA 191
 Superfamily ASAPHOIDEA 192
 Superfamily DIKELOCEPHALOIDEA 193
 Superfamily REMOPLEURIDIDOIDEA 194
 Superfamily CYCLOPYGOIDEA 195
 Superfamily TRINUCLEIOIDEA 196

Order Ptychopariida 198
 Suborder PTYCHOPARIINA 200
 Superfamily PTYCHOPAROIDEA 201
 Superfamily ELLIPSOCEPHALOIDEA 203
 Suborder OLEININA 204

Order Harpetida 205

Order Nektaspida 207
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLATES</td>
<td>212</td>
</tr>
<tr>
<td>Introduction to the Plates</td>
<td>213</td>
</tr>
<tr>
<td>CAMBRIAN</td>
<td>214</td>
</tr>
<tr>
<td>Maotianshan Shale Member (Chengjiang Biota) (China)</td>
<td>215</td>
</tr>
<tr>
<td>Pioche Formation (USA)</td>
<td>220</td>
</tr>
<tr>
<td>Jbel Wawrmast Formation (Morocco)</td>
<td>225</td>
</tr>
<tr>
<td>Kaili Formation (China)</td>
<td>231</td>
</tr>
<tr>
<td>Spence Shale member (USA)</td>
<td>236</td>
</tr>
<tr>
<td>Jince Formation (Czech Republic)</td>
<td>243</td>
</tr>
<tr>
<td>Wheeler Formation (USA)</td>
<td>253</td>
</tr>
<tr>
<td>Marjum Formation (USA)</td>
<td>258</td>
</tr>
<tr>
<td>Weeks Formation (USA)</td>
<td>263</td>
</tr>
<tr>
<td>McKay Group (Canada)</td>
<td>278</td>
</tr>
<tr>
<td>ORDOVICIAN</td>
<td>285</td>
</tr>
<tr>
<td>Fezouata Formation (Morocco)</td>
<td>286</td>
</tr>
<tr>
<td>Fillmore Formation (USA)</td>
<td>296</td>
</tr>
<tr>
<td>Valongo Formation (Portugal)</td>
<td>300</td>
</tr>
<tr>
<td>El Fabar Ordovician Tunnel (Spain)</td>
<td>311</td>
</tr>
<tr>
<td>St. Petersburg (Russia)</td>
<td>314</td>
</tr>
<tr>
<td>Bobcaygeon Formation (Canada)</td>
<td>327</td>
</tr>
<tr>
<td>Beecher’s Trilobite Bed (USA)</td>
<td>330</td>
</tr>
<tr>
<td>Rust Formation (USA)</td>
<td>335</td>
</tr>
<tr>
<td>Ktaoua Group (Morocco)</td>
<td>345</td>
</tr>
<tr>
<td>Cincinnatian Series (USA)</td>
<td>349</td>
</tr>
<tr>
<td>SILURIAN</td>
<td>354</td>
</tr>
<tr>
<td>Rochester Shale Formation (USA)</td>
<td>355</td>
</tr>
<tr>
<td>Hemse Marl (Hemse Group) (Sweden)</td>
<td>358</td>
</tr>
<tr>
<td>DEVONIAN</td>
<td>362</td>
</tr>
<tr>
<td>Haragan & Bois D’Arc Formations (USA)</td>
<td>363</td>
</tr>
<tr>
<td>Hunsrück Slate (Germany)</td>
<td>371</td>
</tr>
</tbody>
</table>
Belén Formation (Bolivia) 375
Devonian of Morocco (Morocco) 384
Ahrdorf Formation - Flesken Member (Germany) 403
Upper Emsian and Eifelian, Northern Europe 413
Penn Dixie Quarry (USA) 428

CARBONIFEROUS 431

Calcaire de Tournai (Belgium) 432
Lake Valley / Cabellero Formation (USA) 435
Aprath (Germany) 439

FIELD WORK & PREPARATION TECHNIQUES 445

Hunting for Trilobites 446
Precautions 450
Fossil Preparation Techniques 452

REFERENCES 460

GENERAL INDEX 475

INDEX TO NAMED OR ILLUSTRATED TRILOBITES 484
Spathacalympene nasuta
Middle Silurian
Osgood Formation - Indiana - USA
Photo courtesy of J. Skabelund and J. Cooper
Without the enthusiastic contributions of dozens of private collectors and professional paleontologists and researchers, it should be more than obvious, this book could never have been published. Nonetheless, I would like to express my personal gratitude to some of the many institutions and individuals who were pivotal in bringing this “magnum opus” to fruition.

First and foremost, my most heartfelt thanks go to my wife, Anne-Sophie Fontenelle, who patiently tolerated my late hours at the computer (which often became the wee, small hours) as I drafted and created illustrations for this very involved text.

I am aware of the enormous debt I owe to my friend, Carlo Kier, who lent his financial support to the entire project as well as put his exceptional collection of trilobites and his immense photographic archive at my disposal. I don’t believe I would have been able to complete this complex volume without his persistence, passion, and enthusiasm and he is, in every way, this book’s co-author!

Without the congenial, passionate, and professional collaboration of Dave Comfort and Jake Skabelund in compiling and scientifically evaluating our photographic archives, there is no doubt that this volume would be less rich and less compelling. Dave deserves my thanks as well for the chapter he contributed on the cleaning and preparation of trilobite fossils. His step-by-step photographs are an excellent illustration of the patience and skill that the long and painstaking process of fossil preparation actually requires.

I am grateful to Dr. Maurizio Gnoli of the University of Modena and Reggio Emilia and Dr. Annalisa Ferretti for the bibliographic and photographic material they so kindly provided and which made it possible to include an analysis of trilobite thin sections in this volume. In addition to his natural, good-natured optimism, Maurizio also urged me on whenever my energies flagged during the development of this project.

The analysis of trilobite visual apparatus would not have been possible without the invaluable contribution of Dr. Riccardo Levi-Setti of the University of Chicago. A special thanks goes also to Dr. Euan N. K. Clarkson of the Grant Institute of Earth Sciences in Edinburgh, Scotland, for having kindly provided us with electronic microscope images of the holochroal eyes of Sphaerophthalmus.

Much gratitude goes to Adolf Seilacher, Emeritus Professor, Institut und Museum für Geologie und Paläontologie, University of Tübingen (Germany) and Associate Professor, Yale University, for the images of trace fossils.

I am grateful to Isabel Rábano, the director of the Museo Geominero at the Instituto Geológico y Minero (Spanish Geological Survey) for permission to use photographs taken at the El Carmen Museum in Ribadesella, Spain, whose collections include important trilobite specimens from the Ordovician of the Asturias.

The plates illustrating the trilobites from the Beecher’s Trilobite Bed could not have been published without the permission of the Peabody Museum of Natural History at Yale University (New Haven, CT); and I am especially grateful to Susan H. Butts (Collection Manager, Division of Invertebrate Paleontology) and Dr. Thomas Whiteley for their collaboration. The X-ray images were provided by Dr. John Cisne, for whose invaluable work I am grateful. Dr. Whiteley, in addition, personally participated in
the creation of the plates dedicated to trilobites from the Walcott-Rust Quarry. His photographs allowed us to include images of one-of-a-kind fossils.

The organization of some of the themes in this book is based upon schemes created by Sam ‘Ohu Gon III on his extraordinary website, http://www.trilobites.info. Having unlimited access to the materials he so kindly made available to us (such as his drawings of trilobites and his many explanatory texts) was of immense assistance as we conceived and developed the graphic component of this volume.

We could not have included the section on Sardinian trilobites without the invaluable aid of Dr. Gian Luigi Pillola and Dr. Francesco Leone, both of the University of Cagliari. The trilobite and arthropod faunas of Sardinia are the best known in Italy, though much work remains.

Because we were unable to create similarly cooperative relationships with museums and institutions in Italy’s north and south, even for the purposes of receiving limited information regarding the trilobite faunas found in the best known localities, we were unable to further extend the chapter on Italian trilobites. Such information would have been extremely important both scientifically and culturally for a full understanding of Italy’s trilobite fauna, and it would appear that even in this area (unfortunately) there is still much work to be done.

I send my warm thanks to Dr. Jih-Pai Lin (Alex), Postdoctoral Associate at the Department of Geology and Geophysics, Yale University, and now in Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China, for permission to publish materials related to Lower Cambrian sites in Russia, Australia, and China (the Chengjiang and Kaili Biotas), as well as for his assistance with the classification of many trilobite specimens and the creation of the “Origins” and “Kaili Formation” chapters.

In addition, I record my gratitude:

to Dr. Andrey Y. Ivantsov of the Paleontological Institute, Russian Academy of Sciences, Moscow, Russia, for permission to publish trilobite images from the Sinsk Formation, Lena River, Siberia;

to my friend, Allart van Viersen, Guest Conservator at the Natuurhistorisch Museum, Maastricht (the Netherlands), for his invaluable assistance in the correction of this text and in the classification of Devonian trilobites from Northern Europe and Morocco;

to Dr. James G. Gehling for permission to publish images of specimens housed in the South Australian Museum;

to Dr. Richard A. Robison, Professor Emeritus, Department of Geology, University of Kansas, for the information and suggestions he provided regarding the classification of Cambrian trilobites from the United States;

to Dr. Dieter Waloszek, Professor at the University of Ulm, Biosystematic Documentation, Germany for kindly providing the image of *Agnostus pisiformis* from the Cambrian Alum Shales “Orsten” in Sweden;

to Dr. G. Geyer, for the Uppsala Universitet, Institutionen för Geovetenskaper, Sweden, for the information regarding the Cambrian trilobites of Morocco;
to Arvid K. Aase for his expertise regarding the faunas of the Fillmore Fm. and his invaluable suggestions for improving the quality of this book;

to Prof. Y.-L. Zhao, curator of the Palaeontological Museum, Guizhou University, for providing study material from the Kaili Formation.

The active participation of private collectors from all over the world allowed us to include information about new and rare species illustrated for the very first time in this volume. We are grateful to:

Bob Carroll and George Hansen for materials related to the Devonian faunas of the Black Cat Mountains, Oklahoma;

Peter Cameron, Luc Hennion and Juan Corbacho Amado for excellent materials from the Ordovician and Devonian of Morocco;

Paul Chinnici for information regarding the Silurian faunas of the Rochester Shale (a site now definitively closed);

Pavel Silhavy, Tomas Hekkers, Roy van der Brul, and Paul J. Hille for materials related to the Cambrian fauna of the Jince Formation, Czech Republic;

Andries Weug and Harald Prescher for information regarding the Devonian of Morocco;

Allart van Viersen, Benedikt Magrean, Andreas Rückert, and Harald Prescher for supplying us with fascinating materials related to the Devonian faunas of Eifel (Germany) and Belgium. A special thanks to Erich Thomas for information and photographs regarding the Carboniferous Aprath locality in western Germany;

Wouter Südkamp and Ru Smith for permission to use images from the Hunsrück Slates (another site that is essentially exhausted), Bundenbach, western Germany;

Jorge Pereira and Manuel Valério, who supplied exceptional photographs of the giant trilobites of the Valongo Formation (Portugal);

Chris Jenkins for access to specimens from the McKay Formation in Canada, and to

Frank Aumann for access to the unusual calmoniids and other trilobites coming from the Devonian Belén Formation in Bolivia.

The collaboration of friends and colleagues, who spared no effort in reading and correcting the text and who also supplied photographic material when it was needed, was no less integral to the completion of this project. In no particular order, then, I want to recall my friends, Enrico Soleri, Nando Musmarra, Diana Riboli, Gianpaolo Di Silvestro, Giorgia Bacchia, Laurence Ho, the team of the Trilobites2 forum (http://tech.groups.yahoo.com/group/trilobites2/), www.paleobusiness.com and www.paleofox.com, Mark Bourrie, Dan and Jason Cooper, Thomas Hegna, Ben Dattilo, Chris (Kenneth) Gass, Pete Peterson, Dustin Rooks, Mark Wolvers, Andy Secher, James Cook, Aleksey Leonidovich Nagovitsyn, Paul Jamison, Sam Stubbs, and Mark Marshall.
A final expression of gratitude goes to the museums and universities who granted us permission to use photographs of specimens in their collections or who provided information essential to the development of this book:

the Academy of Sciences, Moscow, (Russia);
the Arkhangelsk Regional Museum, (Russia);
the Early Life Institute and Department of Geology, Northwest University, (Xian, China);
the Forschungsinstitut und Naturmuseum Senckenberg, (Frankfurt am Main, Germany);
the Geoworld (Geosvět) – Gallery of Minerals and Fossils, (Praha, Czech Republic);
the Geological Museum of Barcelona, (Spain);
the Guizhou Museum (GM), Guizhou University, (Guiyang, China);
the Institut Royal des Sciences Naturelles de Belgique, (Brussels, Belgium);
the Katholieke Universiteit Leuven, (Belgium);
the Museum of Comparative Zoology, (Harvard, USA);
the Orton Geological Museum, Ohio State University, Columbus, OH (USA);
the Paleontological Museum of Guizhou University, (Guiyang, China);
the Peabody Museum of Natural History, Yale University (USA);
the Smithsonian National Museum of Natural History, Washington, DC (USA);
the South Australian Museum (SAM) Paleontological Collection, (Adelaide, Australia);
the St. Petersburg Paleontological Laboratory, (Russia);
the University of Alberta, (Canada);
the University of Cagliari, (Italy);
the University of Modena and Reggio Emilia, (Italy), and
the Yunnan Geological Survey, Kunming, Yunnan, (China).

Enrico Bonino
The original concept for this book was to create a catalog that illustrated the best of the specimens housed in the Back to the Past Museum in Cancún, Mexico, the first in the world dedicated to trilobites. We quickly realized, however, that the addition of in-depth material related to the morphology, paleoecology, and taxonomy of trilobites would make our effort more thorough and increase its appeal both for casual collectors and for professional paleontologists and researchers in museums, universities, and other institutions.

The profound enthusiasm that our friends and colleagues demonstrated for this project served as an additional impetus for the expansion of the book and pushed us to broaden our contacts with private collectors and research institutions all across the globe in the search for illustrations and photographs. Those new contacts, in fact, bore abundant fruit. Thanks to the photographs we obtained, we were able to enrich the second section of this volume with a series of illustrated tables that describe lesser known (but hardly less important) exposures where trilobites have been found.

This book, as we’ve already suggested, is divided into two sections. The first is dedicated to the systematic taxonomy of trilobites, while the second section (perhaps more aesthetically appealing) brings together images of nearly all the trilobites that made up the Museum’s collections as of 2010. These are organized according to age and provenance.

The drafting of the section dedicated to taxonomy required extensive bibliographic research, particularly because we wanted to avoid republishing the “classic” images and information that are so common in general-interest publications about trilobites or which are available online. As scientific knowledge has developed, especially in the areas of systematic taxonomy and cladistics, the result has been an evolution in thought and a renewed interpretation of the morphology of fossil organisms in light of taxonomic considerations. This, in turn, has led to the reorganization of a number of trilobite orders and the creation of (or the splitting into) new orders. We made the greatest possible effort to provide our readers with the most up-to-date information available. Given the sometimes unpredictable nature of the development of paleontological knowledge, however, including the reinterpretation of existing data or the discovery of new fossiliferous exposures, we cannot exclude the possibility that some of the information in this book may already be “dated” by the time it is published.

The second part of the book is composed of illustrated plates that trace geological time from the Cambrian to the Carboniferous (at the moment, the Museum has no Permian trilobites). Each of these plates corresponds to a unique fossiliferous exposure or Lagerstätte and includes information regarding the paleogeography and position of the continents during the period in question; the location of the site today; a description of the paleoenvironment, sedimentology, and geology (both in the past and today); and photographs and drawings of the fossils found there.

To further enrich this volume, additional information and photographs regarding worldwide fossil sites that are of unique interest (some of which, unfortunately, are no longer accessible) and which are not represented in the Back to the Past Museum’s collections have been compiled from a variety of sources.

The reader should understand that the Lagerstätten described in this book do not (and naturally cannot) represent an exhaustive list of important paleontological localities, just as the species we mention or illustrate do not represent all known trilobites. Indeed, it should come as no surprise that some well
known or interesting species are not illustrated in this work.

In general, the drawings in this volume are either the work of Enrico Bonino or were modified or readapted by him. The photographs, on the other hand, are all previously unpublished and represent trilobite specimens that have heretofore been inaccessible to the general public.

Some of the species we illustrate, moreover, have yet to be scientifically described and classified. Taken together, all of these factors make us confident that this book will be an important contribution to trilobite research and knowledge, and we hope it will be as useful and interesting to the specialist as it is to the everyday trilobite enthusiast.

Enrico Bonino & Carlo Kier
As the author of the “Paleoweb” column for PaleoItalia, the newsletter of the Italian Paleontological Society (which members receive along with the Society’s Bulletin), I was researching an article for my column when I stumbled upon Enrico Bonino’s website (http://www.keyobs.be/fr/ebonino/index.html). I was immediately struck by the richness of the materials he had assembled and by the rigor with which he approached them.

I should hasten to make clear that I have been employed for nearly forty years by the University of Modena and Reggio Emilia as a professor of paleontology. I am also a member of the “Paleozoic Group,” a team of friends and researchers dedicated to scientific investigation of the most disparate paleontological arguments related to that ancient period of Earth’s history—from some 542 to 251 million years ago.

What a happy coincidence, then, that Enrico Bonino, geologist and originator of the idea for this book, is principally interested in the first fossil evidence of life on our planet, evidence that often appears in unique localities (known to those in the field as “Fossil Lagerstätten”) which, for a variety of reasons, expose exceptionally well preserved fossils.

Trilobites are another topic dear to Enrico’s heart. Once I had finished the article I mentioned earlier, we began a profuse email correspondence, a sort of reciprocal scientific support group that was rewarding for both of us. When, some time later, he proposed the idea of creating a volume that would remedy the lack of trilobite materials available in Italian, I could do no less than offer my most enthusiastic support.

Behind all of this, of course, lies not solely the esteem in which we hold one another, but Enrico’s genuine passion for the subject matter. Add to that his excellence in wielding and elaborating scientific data and his fine aesthetic sense, and this exemplary book is the result. The Back to the Past Museum Guide to Trilobites stands out not solely for its abundance of extraordinary images but for the precision of the text and for its evident commitment to excellence.

Even beyond the book’s thorough treatment of the specific topics it covers, the reader may also be surprised by the material on trilobites and trilobite exposures in Italy (specifically, in Sardinia, Friuli and Sicily). Bravo, Enrico!

Dr. Maurizio Gnoli, Professor of Paleontology and Vertebrate Paleontology, University of Modena and Reggio Emilia.
Trilobites have been a delightful obsession of mine for some time. As a young graduate student in Zoology over twenty years ago, I gravitated to these amazing Paleozoic arthropods, whose huge diversity and worldwide presence symbolized the diversification of life on Earth. I remember hunting for and devouring any books that offered significant focus on the Trilobita. My obsession eventually found virtual expression when in 1999, more than a decade ago now, I first unveiled *A Guide to the Orders of Trilobites*, a website celebrating trilobite diversity and evolution. That website opened international doors for me, introducing me to like-minded trilobitophiles on all continents, and confirming for me that trilobites were worthy of life-long dedication. One of these “fellow trilobitophiles” is Enrico Bonino.

When Enrico announced that he and Carlo Kier were working on a new book dedicated to trilobites, it drew my attention immediately. It was not a primarily technical work, such as the *Treatise of Invertebrate Paleontology* (Volume O - the so-called “Trilobite Bible”), and yet neither was it a purely popular account. The authors offer us a substantive work, exploring the “world of trilobites,” their origins, morphology, classification, ecology, and paleogeography in extensively researched and richly illustrated sections.

They follow the text with a large photographic catalogue of trilobites (and some close relatives) organized in geochronological order and by Lagerstätten (trilobites from all over the world are illustrated, including more than 600 species) that is more than adequate to demonstrate the richness and distinctiveness of this singularly wonderful class of ancient arthropods. Even some specimens only very recently discovered (2009) and published are included, such as the giant asaphids from the Valongo Formation of Portugal.

A work such as this could not have come into being without the cooperation of a large, international community of collectors, preparators, researchers, and public institutions that participated in sharing some of the finest trilobite specimens known, and I enjoyed contributing illustrations and feedback to this project over the years. The majority of the trilobites in this book are to be found in the Back to the Past Museum (an impressive collection, one of the best private exhibitions of trilobites in the world).

It was an additional delight, however, to recognize specimens from the collections of other notable collectors such as Peter Cameron, Sam Stubbs, Mark Marshall, Jake Skabelund and many others not possible to name here.

Like many who devote their lives to our extinct trilobed antecedents, Enrico and Carlo don’t consider the amount of time, research, international networking, and artistic creation that were necessary to create this book. Rather, The Back to the Past Museum Guide to Trilobites is a product of the joy that comes from immersion into the world of creatures hundreds of millions of years gone by, a joy that we can all now share!

Samuel M. Gon III, Ph.D.
Creator and webmaster of “*A Guide to the Orders of Trilobites*”
http://www.trilobites.info
Honolulu, Hawai‘i
Cancún, Mexico, located on the east coast of the Yucatán Peninsula and bathed by the blue waters of the Caribbean Sea, provides the setting for the Back to the Past Museum. Here, not far from the famous Chicxulub Crater, the impact site of a meteorite that struck the Earth some sixty-five million years ago, is housed the first museum dedicated entirely to trilobites. The rarity, quality, and scientific importance of the specimens on display at the Back to the Past Museum (more than three hundred species are represented) make this one of the most important collections of trilobites in the world.

The acronym “BPM coll.” indicates specimens drawn from the Museum’s collections.

These jewels, which have found their way to the Museum literally from the four corners of the globe, are the culmination of years of field research, acquisitions, or exchanges by the Museum’s director, Carlo Kier, the co-author of this book. The individuals whose work has made the Museum’s projects possible include Enrico Bonino (geologist, and the Museum’s scientific consultant and artistic director), Jake Skabelund (an American biologist and well known professional fossil hunter), and Carlo Kier. Behind the wings are specialists such as Dave Comfort, Bob Carroll, and Scott Vergiels who are responsible for the preparation of display specimens and whose contributions are literally indispensable. It hardly needs to be said that nothing of what visitors see at the Museum would be visible without their patient, professional preparation of the Museum’s invaluable fossil specimens.

The Museum, in addition to providing a careful scientific description of each of the specimens on display, is especially committed to its educational function as well. Each display case contains a reconstruction of the environment at the time the organisms lived, as well as photographs and illustrations that explain the geology of the sites where trilobites are found and the flora and fauna that shared an ecological niche with them.

A visit to the Museum begins at the dawn of the Paleozoic and continues in a virtual voyage through time across the millennia, from the Cambrian to the Permian. Each geological period is richly illustrated with specimens that are often one-of-a-kind, and the background of each display case follows the color standards established by the International Commission on Stratigraphy for the official geological time scale.

Fig. 1. Close-up of a display dedicated to trilobites from the Devonian of Morocco.
Fig. 2. Entrance to the Museum. On the right: the time scale showing the distribution of trilobites as compared to other members of the animal and plant kingdoms. In the background: display cases containing the Museum’s collections, organized chronologically and according to provenance.

Fig. 3. Each Lagerstätte is represented by a display that includes drawings and photographs that illustrate the most important fossil fauna from that site, and is accompanied by a description of the site’s geology and paleogeography, sedimentology, and position on the geological time scale.

The Museum is constantly being updated as new specimens are acquired and integrated into the displays. Our main goal is to inspire new generations of collectors and future paleontologists and to expand awareness of these ancient and fascinating organisms which colonized almost all Paleozoic oceans for nearly three hundred million years.

The Back to the Past Museum
In addition, for those who can’t easily travel to visit us, we have created a website expressly so that the Museum’s collection and displays can be more widely seen and enjoyed. The website also provides access to the Museum’s online store where books, posters, dioramas, and even trilobites themselves can be purchased. The address is: http://www.backtothepast.com.mx
Some Notes on Classification and Terminology
(based upon Lebrun, 2002; modified).

With the intention of establishing order in the complex diversity of the animal and plant kingdoms, the publication of the tenth edition of Carl von Linné’s Systema Naturae (1758) gave rise to the creation of an elaborate hierarchical classification system – the beginning of zoological nomenclature.

The basic unit of this hierarchy was the species, and the system’s purpose was to group organisms together according to their interrelationships. Each species was given a two-part or “binomial” scientific name composed, first, of the name of the genus to which an organism belonged. The genus name was followed by the species or “specific” name, which is the hierarchical level just below the genus.

The genus (or generic name) is always written with an initial capital letter, while the specific name is always written in lower case. Both names are printed in italics (for example, Selenopeltis buchii). If the name has been mentioned previously in a text – or in the case of a list of species that belong to the same genus – the generic name may be abbreviated using its first letter (S. buchii), but it can never be omitted. In general, scientific names are presumed to have Latin or Greek roots, such as in the case of the trilobite Asteropyge longispina. The generic name is formed from the Greek words asteros (star) and pyge (buttocks) and the species name is a combination of longi (long) and spina (spine).

This rule, however, has more recently been abandoned in large part, and zoological naming has been left to the liberal interpretations of the specialists who study and describe new taxa.
The name of the “author” or authors follows the binary or Linnaean classification; these are the workers who first named and described the organism – for example, the trilobites Isotelus gigas De Kay 1824 or Crozonaspis kerforrei Clarkson & Henry 1970. When the author’s name appears within parentheses, such as, for example, in the case of Panderia beaumonti (Rouault 1847) – this indicates that the fossil had originally been given a different name. Rouault, for example, first called the trilobite in question Il-laenus beaumonti, though it was later assigned to a different genus.

Abbreviations such as “cf.” (confere or “compare with”) or “aff.” (affinis or “akin to”) are used to signal uncertainty regarding the classification of a particular organism – for example, Calymene cf. breviceps and Lonchodomas aff. pennatus. Finally, the abbreviation “sp.” following the genus name (e.g., Phacops sp.) indicates that the genus has been identified but not the species.

A genus (the plural is “genera”) includes one or more species that share a number of characteristics. Moving up the taxonomical hierarchy, a group of genera with shared features are contained within a family, whose name ends in the suffix “-idae.” Groups of families, in turn, may be placed within superfamilies (suffix “-oidea”), suborders (suffix “-ina”), and collected into orders (suffix “-ida”), orders into classes, and classes into phyla (the singular is phylum). At the very top of the hierarchy is the Kingdom.

To take a concrete example: Neseuretus (Neseuretus) tristani tardus Hammann 1983 belongs to the Family Calymenidae Hawle & Corda 1847, the Order Phacopida Salter 1846, the Class Trilobita Walch 1771, the Phylum Arthropoda Siebold & Stannius 1845 and, finally, to the Kingdom Animalia. Within these basic taxonomic categories we find intermediate subdivisions: subspecies, subgenera, superfamilies (suffix “-inae”), and so on.

Cladistics

Cladistics, or cladistic taxonomy (from the Greek word klados = branch), is a systematic scheme for classifying living organisms. Cladistics, also known as phylogenetic systematics, originated in the work of Willi Hennig (1913-1976), and its system is based upon the degree of inferred kinship between and among organisms – or, to say it another way, on their temporal distance from their last shared ancestor. In the cladistic classification method, animals and plants are divided into monophyletic taxonomic groups (clades) that comprise the common ancestor and all its descendents.

The evolutionary relationships within a clade are established on the basis of shared features (homologies) and on the assumption that such features indicate the presence of a common ancestor. Classification is also based upon the presumption that two new species may be formed by the sudden separation from a common ancestor rather than through gradual evolutionary change. A clade that is included in a larger unit is said to be “nested” within that clade.

A clade possesses a single ancient member in common, and the phylogenetic lines of descent from that branch are called monophyletic groups. A taxon is said to be polyphyletic, on the other hand, if it does not share a common ancestor with another taxon, and polyphyletic groups have little pertinence to cladistics. Frequently, they reflect a sort of popular association of organisms that share some features (the algae, for instance), though, in fact, they actually represent a number of clades with distinct origins.

A monophyletic group is characterized by one or more autapomorphies (features that are uniquely present in the terminal phase of a group). Autapomorphies are observed exclusively in one member of a clade and not elsewhere, not even in closely related organisms, and it is essential to point out that such autapomorphies may, in some cases, be lost in adulthood, even if they are maintained at an embryonic
level following paedogenesis (that is, sexual development that is accelerated with respect to a normal individual).

Paedogenesis contrasts with neoteny, the more-or-less marked retention, by adults in a species, of traits previously seen only in juveniles. The term paedomorphosis is used, instead, when features are present in a sexually mature adult that are typical of earlier stages of development. In a practical sense, we are speaking of adult forms that retain aspects reminiscent of juvenile stages of life.

A clade is differentiated from others by derived features that do not appear in other clades (apomorphy), though it may be evolutionarily related to other clades through a common ancestor and exhibit shared derived characters (synapomorphies). If a clade does not include all the descendents of a common ancestor (that is, it includes most of the species derived from the ancestral progenitor but excludes some branches), the clade is called paraphyletic. A symplesiomorphy is a primitive feature shared by two or more taxa; that feature may appear in other taxa as well if they share an ancestor with the taxon in question, but cannot be used to define a clade.

All of these relationships are represented in diagrams called cladograms, formed of a series of two-pronged branches. Each point of branching represents a divergence from a common ancestor. A cladistic analysis may be based on a wide variety of data, including DNA sequencing (so-called “molecular data”) and on biochemical and morphological information.

In addition, the reader may come across the following terms in the scientific literature, which we describe here as a matter of thoroughness.

– The nomen nudum (plural: nomina nuda) or “naked name” is printed in normal characters (i.e., not in italics) to indicate that an organism’s name has not yet been accepted and standardized by the International Commission on Zoological Nomenclature (ICZN). If the organism’s name is later formalized, it is then written in italics (e.g., Canis latrans, the coyote). The formal scientific name given to an organism may or may not correspond to its previous nomen nudum.

– The nomen oblitum (from Latin, “forgotten name”) refers to names that have not been used by the scientific community since 1899 and when a name has either been replaced by a more recent name (called the nomen protectum) or when a formally accepted homonym exists. The former name, no longer in use, is said to be “forgotten” and the nomen protectum takes precedence.

– The nomen dubium (“doubtful name”) is used to indicate fossils that have no distinct or unique features that permit them to be classified according to rigorous scientific standards. This may happen when the holotype (the physical specimen upon which a species description is originally based) has been lost or lacks all the information necessary for a true taxonomic classification.

– The nomen novum (“new name”) is a scientific name created specifically to replace a name that is already in use but which is no longer considered legitimate (e.g., because it is a homonym or is spelled the same as an existing, older name.) A nomen novum is not applied, however, when a name is changed on the basis of a new taxonomic interpretation.
TRILOBITA

Biota (Classification by Systema Naturae 2000)
Domain: Eukaryota Whittaker & Margulis, 1978
Realm: Animalia Linnaeus, 1758
Subkingdom: Bilateria Hatschek, 1888 (Bilaterians Cavalier-Smith, 1983)
Branch: Protostomia Grobben, 1908
Infrakingdom: Ecdysozoa Aguinaldo et al., 1997
Superphylum: Panarthropoda Cuvier
Phylum: Arthropoda Latreille, 1829
Subphylum: Arachnomorpha Heider, 1913
Infraphylum: Trilobita
Class: Trilobita Walch, 1771

Distribution: Lower Cambrian (~524Ma) – Upper Permian (251Ma).
Environment: marine, all ecological niches were occupied.
Feeding: full alimentary pyramid.
Exoskeleton: calcitic at lower concentration in magnesium.
Dimensions: from less than a millimeter to near one meter long.
Importance: paleoecological, paleobiogeographical, and partially biostratigraphic.

Monatsheft 9: 541-552.

References

Moore, R. C. et al. (Eds.) (1959). Treatise on Invertebrate Paleontology: Part O, Arthropoda 1 (Arthropoda—General Features, Proarthropoda, Euarthropoda—General Features,

References
References
References

References
Drotops armatus
Lower to Middle Devonian - Morocco
(BPM coll.)
A

Abadiella 26
Acadolenus snajdri 251
Acadoparadoxides briareus 225, 226, 227, 228, 229
Acadoparadoxides sirokii 246
Acanthopleurella 79, 98
Acanthopleurella stipulata 13
Acanthopyge consanguinea 85, 364
Acanthopyge 62, 63, 385
Acastava cf. schmidtii 421
Acastidae 180
Acastoidea 177, 180
Acastoidea 427
Achataella achates 339
Acidaspides praecurrents 174
Acidaspis 83
Acidaspis jessi 107
Acidaspis kuckersiana 83
Achatella achates 427
Acheta packi 336
Acheta cornutus 336
Acheta solutae 88
Acheta sylvestri 218
Acheta sylvestri sp. 26
Ampyx 36, 145, 196
Ampyx cf. priscus 121, 196, 287
Ampyx nasutus 57, 196, 315
Anisopyge 131
Anomalocaris 103, 258
Anomalocaris saron 88
Anomalocaris 191
Anomocarellidae 191
Anomocaridae 191
ANOMOCAROIDEA 189, 191
Anoplenus cf. henrici 139
Antagmidae 201
Antatlasia 26
Antennae 72
Apyocrates 292
Aptelaspis 196, 197
Araraphoia spatulata 264
Archeaspinus 18, 24
Archeaspinus 26
Archeogon (Laevibole) laevicauda 441, 442
Archeogon (Phillibole) cauliicularis 441
Archeogon (Phillibole) nehetenensis 442, 443
Archeogon (Phillibole) polleni 441
Arctinus 172
Arctinus boltoni 63, 67, 74, 356
Arthrhorhachis tardo 144
Asaphellus 121, 145, 144, 287
Asaphellus cf. fezouataensis 287
Asaphellus stubbi 289
Asaphellus toledanus 301
Asaphida 189
Asaphidae 192
Asaphiscidae 201
Asaphiscus 201
Asaphiscus wheeleri 202, 254, 255
ASAPHIDEA 189, 192
Asaphoidichinus 114
Asaphopsoides 194
Asaphus 35, 108
Asaphus delphinus 315
Asaphus expansus 42, 45
Asaphus holmi 316
Asaphus kowalewskii 48, 103, 316
Asaphus lepidurus 52
Asaphus platyurus 315
Asaphus punctatus 315, 325
Asaphus rancipes 36, 44, 315
Asaphus robustus 315
Asteropyge 72, 75
Asteropyge comae 405
Asteropyge longispina 9, 405
Asteropyge primumensis 421
Asteropyge punctata 415
Athabaska bithus 169, 238
Atoptidae 201
Aulacopleura 98, 187
Aulacopleura konincki 109, 187
Aulacopleuridae 187
AULACOPLEUROIDEA 184, 187
Auritana 191
Auritamia 194
Austroops smoothopos 394
autopomorphies 10
Avalon explosion 22, 86

B

Bailiella 60, 138
Bailiella cf. levii 139
Balcoracania 166
Balcoracania dailyi 55, 120
Balizoma 146
Balniabari 98, 204
Barrandeops forteyi 394
Barrandeops granulos 395
Barrandeops ovasus 393
Barrandeops 393
Basilicus (Basilicus) vidali 289
Bathychelidae 176
Bathychelius 176
Bathychelius castilanus 301
Bathynotus kueichowensis 232
Bathyuridae 188
Bathyuriscus 258
Bathyuriscus rotundatus 188
Bathyriscus wasatchensis 80, 241
BATHYUROIDEA 184, 188
Bauplan 29
Bavarilla 176
Bavarillidae 176
Beckwithia typa 274, 277
Beecher’s Trilobite Bed 330
Belenopyge braniensis 389
Belgibole abruptirhachis 153
Bellacartwrightia calliteles 63, 180, 430, 431
Bigotina 26
Bigotinidae 203
Black Cat Mountain 363
Blackwelderia sinensis 174
blindness 50
Bobcaygeon Formation 327
Boedaspis ensifer 57, 173, 317
Bohemilla 194
Bohemillidae 194
Bohemoharpes 83
Bohemoharpes acuminitus 84, 206,
Carbonocoryphe (Winterbergia) suprahercynica 153
Carbonocoryphe 100, 108, 184, 188
Carrara Formation 220
Caryocaris 142
Cedaria minor 92, 264, 266
Cedariidae 201
Cedaria schachi 57, 61, 266, 267
Celmidae 188
Celmus 188
cephalic spines 38
cephalon 29, 35
Cephalopyge notabilis 225, 229
Ceratarges 57, 397
Ceratarges armatus 407
Ceratarges berolinensis 406
Ceratiocaris 112, 124, 146
Ceratomurus 364, 365, 397
Ceratopyge 192
Ceratopygidae 175, 192
Ceratopygidae 192
Cerarimus icarus 350
Cerarinus marginatus 328
Ceraurus 118, 181, 340
Ceranus globulobatus 40, 328
Ceranus pleurexanthemus 34, 335, 339, 344
cerci 72
Ceruolimbus cf. pegakanthenodes 191, 297
Chagrinichnites brooksi 112
Chagrinichnites osgoodi 112
Chancelloria 258
Chancia ebdome 238
Changshaniidae 201
Chasmosphaericeps 317
Chasmosphaerites 153
Cheliocephalidae 170
Cheiropyge 184
Cheiropyge koizumii 132
Cheiruridae 181
CHEIRURINA 175, 181
Cheiruroidea 181
Cheiruroida 169
Cheirurus 147
Cheirurus (Crotalesophalus) gaertneri 147
Chelonielon calmani 371
Chenhuuida 169
Chengkouiidae 203
Chlusinia keyserlingi 347
Choia 258
Chotecops ferdinandi 72, 371, 372, 373
Choubertella 26
Cinccinnatian Series 349
circulatory system 74
clade Arachnata 208
clades 10
cladograms 11
Clarkeia 129
Clavagnostidae 162
Cliffia cf. lataengae 279
Cloudina 86, 87
coaptation 60
Colpocoryphe 289
Colpocoryphe bohemica 79
Colpocoryphe rouaulti 176, 311
Colpocoryphe thorali 301
Coltraneia 386
Comptonaspis 437, 438
Comptonaspis swallowi 347
Comura 57, 94
Comura bulyncki 94, 95, 386
Condylolype eli 230
Condylolypeoidea 162
Conocoryphe 42, 98, 138, 201
Conocoryphe cf. brevifrons 139
Conocoryphe cirina 99, 249, 250
Conocoryphe sulzeri 109, 201, 249
Conocoryphidae 201
Conocephalinae 201
Conomusites lobatus 25
Conophillipsia 131
Coosellidae 201
Coosa 52, 63, 92, 201, 202, 265, 266, 271
Coosia 201
Cordania 187
Cordania falcata 187, 365, 366
Cordania wessmani 365
cornea 43
Cormopectus 416
Cormopectus beecheri 330, 331
Cormopectus cornutus cornutus 405, 406, 416
Coronocephalus 129, 181
Corrugatagnostus 161
CORYNEXOCHIDA 167
Corynexochidae 169
Corynexochnida 167, 169
Corynexochoidea 169
Corynexochus latus 138
Corynexochus sardous 138
Coscinocyrtus 137
Crepecephalidae 201
Cricocosmia jinningensis 219
Cromus 146
Crotalesophalus gibbus 63, 181, 397
Crozonaspis kerfornei 10
Crozonaspis morenensis 311
Crozonaspis struevi 46, 47, 302
Cruziana 111, 113
Cruziana omanica, VI
Cruziana polaris 112
Cruziana semiplicata 112, 115
Cryphaeoides rostratus 377
Cryptolithus 36, 42, 103, 196
Cryptolithus bellulus 330, 331
C
Cabellero Formation 436
cæsura 44
Calcaire de Tournai 433
Calmoniidae 180
Calodiscidae 163
Calodiscus foveolatus 138
Calycoscutellum 168
Calymene 83, 152
Calymene neotuberculata 360, 361
Calymene breviceps 10, 123
Calymenella boisseli 143, 145, 148
Calymene niagarenensis 357
Calymene polgari 107
Calymene tuberculata 84, 359, 360
Calymenidae 176
CALYMNINA 175, 176
Calymenoidea 176
Calyptraulax callicephalus 341
Cambroinyoella 26
Cambropallas testo 225, 227
Cammereraceras 90
Cambrian explosion 21, 24, 215
Canadapis 18
Carbonocoryphe suprahercynica 153

361
Bojescutellum campaniferum 44
Bolaspidea 202, 259
Bolaspidea houensis 255
Bolaspidae 201
Bolbineoassa dictyosa 77
Boollandia globiceps 186, 434, 435
Bonnia 26
Bornemannaspis solitaria 137
Bouleia dagincourt 376
Bowmania americana 38
Brachyaspis microps 256
Brachyaspis sulcatum 255
Brachymetopidae 187
Brachymetopus 131, 187
Bradyfallotaspis 26
Breizhophs bigranulosus 422
Breviscutellum 367
Bristolia bristolensis 165, 221
Bristolia fragilis II, 223
Bristolia insoles II, 221, 224
Bristolia mohavensis 63, 221
Buenaspis 18, 207
Buenaspis foyerisi 207
Bulaiaspis 161
Bumastoides holei 52, 63, 99, 338, 344
Bumastoides porrectus 338
Bumastus 98, 167, 168
Bumastus ioxus 357
Bundenbacih benceeki 374
Burlingia ovata 232
Burmeisterella armata 94, 372

General Index
Cryptolithus tesselatus 110, 350
Ctenocephalus 138
Ctenocephalus coronatus 250
Ctenocephalus (Harttella) cf. terranovicus 139
Ctenopyge 43, 204
Cummingella belsama belsama 434
cuticle 29
Cyanurus singularis 22
Cybele 52, 317
Cybele bellatula 48, 61, 316
Cybeloides plana 329
Cybelurus 77
Cyclocoeoloma tuberculata 56
Cyoppyge 98, 100, 102, 195
Cyoppyge marginata 144
Cyoppygidae 195
CYCLOPyGOIDEA 189, 195
Cyphaspis 57, 187, 422, 387
Cyphaspis balanops 407
Cyphaspis carrolli 366
Cyphaspis ceratophthalmus 407, 428
Cyphaspis gaultieri 366
Cyphaspis gaultieri 422
Cyrtometopella 318
Cyrtometopus clavifrons 318
Cyrtometopus sembnitzkii 318, 319

D
Daguinaspis 18, 26
Dalmanites 38
Dalmanites lamarmorae 135, 142
Dalmanites limulurus 179, 356, 357
Dalmanites meneghiniana 142
Dalmanitidae 179
Dalmanitina 152
Dalmanitina (Dalmanitina) acuta 143
Dalmanitina socialis 47, 119
DALMANITOIDA 177, 179
Damesella paronai 174
Damesellidae 174
DAMESELLOIDEA 171, 174
Dawsonia 138
Deanaspis goldfussi fluminensis 143, 148
Deanaspis ?novareseii 150
Dechenella daumeriesi 68, 417
Dechenella verneuili 417
Decitivolithus aff. alfredi 347
Degamella 97, 99, 100, 102
Degamella nuda 195
Deiracephalus aster II, 57, 80, 265
Delgadella 26
Deltacephalus magister 377
Densonella semele 92
Diaclaymene 357
Diacanthaspis (Acantholomina) minuta 173
Diacanthaspis parvula 343
Diademaproetus 418
Diademaproetus holzapfeli 427
Diademaproetus praecursor 186
Diagonella 258
Diaphanometopidae 179
Dicanthopyge 80, 279
Diceratocephalidae 201
Dickinsonia 18
Dicranopeltis nereus 357
Dicranopeltis ubaldoi 143
Dicranurus 173
Dicranurus kamatus elegantus 57, 368
Dicranurus menghii 143
Dicranurus monstrosus 57, 398
Dikeloecephalidae 193
DIKeloCEPHALOIDEA 193
Dikeloecephalus 193
Dikeloecephalus gracilis 193
Dikeloecephalina 292
Dikeloecephaliniidae 191
Dikeloecephaloidea 189
Dimerypyge 184
Dimeropygidae 188
Dinesidae 169
Dionide 36, 197
Dionide mareki 301, 311
Dionidae 196
Diplagnostidae 162
Diplagnostus 138
Dipleura dekayi 176, 378
Diplchnites 111, 113
Ditomopyge 131
Ditomopyge fatmii 132
diverticula 208
Dohmiella 418
Dohmiella dewildei 418
Dokimokephalidae 201
Dolerolenus 166
Dolerolenus bifidus 140
Dolerolenus courtessolei 140
Dolerolenus longioculatus 137
Dolerolenus zoppii 135, 140
Dolicometopidae 169
domes and nodes 66
domicilium 77
Doryagnostidae 162
Dorypyge 138
Dorypygidae 169
doubtless 46
doublet 35
Drepahora 174
Drepahora premesnili 174
Dresbachia amata 266, 277
Dreyfussina exopthalmata 143, 145
Dreyfussina struvei 145
Drotops armatus 57, 178, 388, 474
Drotops megalomanicus 46
Ductina ductifrons 178
durophagy 89
Duslia insignis 295

E
Eccaparadoxides pusillus 244, 247
Eccaparadoxides rohanovicus 245
Eccoptochile almadenensis 303, 311, 312
Eccoptochile impedita 143
Eccoptochile tumifrons 145
edysis 79
Ectillaenus 167
Ectillaenus giganteus 302, 311, 312
Edelsteinaspidae 169
Eidiacara 21
effacement 98, 189
Eldonia eumorpha 219
Eldonia 295
Eldredgeops rana 47, 61, 78, 80, 430, 431
Eldredgeops rana crassituberculata 29, 52
Elkanaaspis 194
Ellisopseudohoeiidae 203
ELLIPSOCEPHALOIDEA 200, 203
Ellisopseudohoei 42, 60, 98
Ellisopseudohoei hoffi 203, 245, 250, 251
Ellisopseudohoei vetustus 251
Elrathia 60, 98, 199, 258
Elrathia kingii 92, 162, 198, 253, 254, 456
Elvinia roemeri 280
Elviniae 201
Emeralda 18, 274, 276
Emmrichellidae 201
Emuella 166
Emuloioidea 166
Enantiaspis etantiopa 137, 140
Enicuraspis 83
Enicuraspis beaumonti 83
Encrinuridae 181
Encrinuroides vigilans 328
Encrinurus 152
Encrinurus macourus 359
endopod 72, 115
enrollment 60
Entomaspidae 205
Entomaspis 205
Eodalmantina destombesi 303
Eodiscidae 163
EODISCIINA 163
Eodiscoidea 163
Eodrevermannia 147, 151
Eofallosaspis 26
Eoharps 205
Eoharps cristatus 303
Eohomalontus 288
Eoredlichia 106, 137
Eoredlichia intermedia 73, 216
epichnia 111
epipodite 72
Erbnenchole erbeni 48, 49, 180, 388
Esmeadina 26
Escaingiidae 203
Estonias exilis 318
Eudolatites flavus 143
Eudolatites 347
Eunomiidae 201
Eurekidae 193
Eurycare 204
evolution of the visual apparatus 49
exopod 72, 115
exuviation (molting) 79
eyes 42
abathochroal 48
holoche ral 43
schizochroal 45
eye socle 42

F
FALLOTASPIDOIDEA 165
Fallotaspis 26, 60
Fallotaspis cf. typica 165
feeding 106
Fillmore Formation 296
filter feeders 109
fixigenae 35
Flexicalymene 81, 83
Flexicalymene granulosa 351
Flexicalymene meeki 61, 112, 176, 352
Flexicalymene ouzregui 105, 348
Flexicalymene retrorsa 351
Flexicalymene senaria 34, 335, 343, 344
Fordinia perfecta 271
Fortiforceps 89
Foulonia 289, 291
Francovichia branisi 379
Fritzaspi s 25, 26
“functional” deformities 94
functional morphology of the eyes 48
Forca 18, 293
Forca bohemica 293
Forca mauretanica 293
Forca pilosa 293
Forcastor palezoicus 374
Fuxianhuiia protensa 218

G
Gabricerasus dentatus 181, 328, 329
Gabriillius 165
ganglia 74
Geesops schlotheimi 408, 409, 422
Geesops sparsinodosus gallicus 415
Gemelloides delasernai 378
gen spines 38
metafixigenal 38
metagenal 38
metalibrigenal 38
profixigenal 38
progenal spines 38
prolibrigenal 38
Genevieveella granulata 85, 267, 271
Geragnostus 128, 145
Gerasaphes ulrichana 341
Geras 52
Gerastos catervus 415
Gerastos cf. doernbergensis 427
Gerastos cultrijugati 419, 420
Gerastos cuiieri 405, 409, 423
Gerastos granulosus 410
Gerastos prox lessensis 419
Gerastos tuberculatos marocensis 186
Germaropyge germari 249
Giordanella meneghinii 137
Giordanella vincii 140
glabella 35
glabellar furrows 35
glabellar lobes 35
Glabhuridae 188
Glossopleura packi 241
Glossopleura bion 63, 239
Glossopleura gigantea 52, 239
Glossopleura fixigenae 35
Glyptagnostidae 162
Gnathobases 72, 90, 106
Gnatholichoides conicotuberculatus
H
habitat and way of life 100
benthic species 103
pelagic species 100
planktonic species 101
Haiducina 85
Hamatoelenus (Hamatoelenus) vintcenti 225, 228
Hamatoelenus (H.) marocanus 229
Hammatocnemidae 181
Hapalopleura 196
Harpag & Bois D’Arc Formation 363
Harpes 69, 147, 152, 206, 389, 403
Harpes macrocephalus 423
HARPETIDA 205
Harpetidae 205
Harpetina 205
Harpides 70, 205, 206, 292
Harpides plautini 206, 319
Harpididae 205
Hebediscidae 163
Hebediscina sardoa 136
Hedinaspis canadensis 279
Heliangasther rhenanus 374
Heliomedusa minuta 219
Helioproetus 153
Heliopyge helios 424
Heliopyge troaomensis 423
Helmetia 209
Helmetia expansa 209
Helmetiidae 208
Hemse mali 358
Hemiarges 343
Hemirhodon amplipyge 260
Hibbertia brevignena 148
Holanshiidae 201
holaspis 78
Hollardops mesocristata 389
Holocephalinidae 201
Holotrichelidae 188
Homalonotidae 176
homeomorphism 97
homologies 10
Hoplobichias plautini 57, 67, 320
Hoplobichoides conicobulcatus 320
Housia 191, 279
Housia ’vacuna’ 280
Housiidae 191
Huemacaspis 143
Hungaliidae 191, 194
Hungioides bohemicus arouquensis 308
Hunsrück Slate 371
Huntoniatonia 38
Huntoniatonia huntonensis 179, 367
Huntoniatonia lingulifer 367
Huntoniatonia oklahomae 366
Hupeidiscus 26
Hupetina antiqua 25
Hurdia victoria 88
Hydrocephalus careri 166, 247
Hydrocephalus mundidi 245
Hydrocephalus minor 244, 247
Hyolites 121
Hypagnostus parvifrons 81, 83
Hypichnia 111
Hypodiricranotus 194
Hypodiricranotus striatulus 63, 162, 252
hypostome 107
impendent 40
conterminant 40
hypochraal 40
planktonic 40
morphology 39

I

Maurotarion axitiosum 370
Maurotarion legrandi 378
McKay Group 278
Meadowtownella trentonensis 340
median tubercle 35
Megalaspidella 192
Megistaspidella triangularis 63, 322
Megistaspis nericus 192
Megistaspis (Ekertaspi) hammondi 288
Menonoma 201
Menonoma semele 267
Menmoniaeidae 201
Menomonia 201
Menoparia 194
Mespis 78
Mercerieria 86
Mesonacis 278
Metacanthina barrandei 391
Metacanthina issoumourensis 385
Metacryphaeus (?Metacanthina) laevinucha 256
Metacryphaeus (?Metacanthina) brevispina 256
Metacryphaeus (?Metacanthina) 256, 258, 268, 270
Metacryphaeus (?Metacanthina) 207, 208
Misszhouia longicaudata 18
Miraspis 98
miomerid 55
Miraspi 98
Miszzhouia 18
Miszzhouia longicaudata 207, 208
Modocia 256, 258, 268, 270
Modocia brevispina 256
Modocia laevinucha 259
Modocia typicalis 92, 202, 259, 260
monophyletic 10
Montezumaspi 26
Morgatia cf. primitiva 311
Morgatia hupei 309
Moroccomites malladoideae 392
Morocops struvei 393
morphotypes 97
atheloptic species 98
ililaeomorphs 98
miniaturization 98
olenimorphs 98
pelagic species 97
phaconmorphs 97
species with cephalic perforations 98
species with marginal cephalic spines 98
Mrakibina cattoi 389
Mucronaspis mucronata mucronata 144
Myopsolentes bouitiouit 166, 225, 228

N
Nahecaris stuerzi 371
Namaqualand 21
Namurapye 187
Namillaenus americanus 337
Nankinolithus granulatus 144
Naraoia 89, 103, 106
Naraoia bertiensis 18, 207
Naraoia compacta 18, 207, 234
Naraoia spinifer 18
Naraoia spinosa 18, 207, 208
Naraoiidae 207, 208
Nautilus 90
Nebidella limbata 137
NEKTASPIDA 18, 207
Necoboldia 48
Neometacanthus 421
Neometacanthus stellifer 411
Neopreus verrucosus 156
neoteny 11
Nepeidae 201
Neseuretus turcicus 145, 148
Neseuretus avus 304
Neseuretus (Neseuretus) tristani tardus 10
Neseuretus tristani 305, 311
Nevadia 26
Nevadia wekksi 165
Newfoundland 21
Nileiidae 195
Nilesus 35
Nilesus armadillo 195, 322
Niobella 145
Niobella cf. primaeva 139
Niobella lindstroemi 323
Niobe schmidti 322
Nobiliasaphus 145
Nobiliasaphus delessei 304
Nobiliasaphus nobilis 143, 306, 311
nomen
dubium 11
novum 11
nudum 11
oblitum 11
Norwoodia 40, 201, 270, 271
Norwoodiidae 201
notches 60
Novakella 100, 195
Numnaspis stitti 438, 439
Nyterops hollandi 67, 420
Nyterops nyter 419, 420
occipital ring 35
Odontopleura 98
ODONTOPLEURIDA 171
Odontopleuridae 173
ODONTOPLEUROIDEA 171, 173
Ogyginus 145, 306
Ogyginus armoricanus 116
Ogyginus corndensis corndensis 52
Ogyginus foriei 122, 307
Ogyginus foriei hammondi 288
Ogygocaris 35, 192
Ogygopsidae 169
Ogygopsis typicalis 241
Ohleum cf. eurydice 426
Oinochoe 172
Olikeaspis 203
OLENELLINA 164, 165
OLENELLOIDEA 165
Olenellus cf. transitsans 222
Olenellus clarki 123, 224
Olenellus fremonti 57, 222
Olenellus gilberti 223
Olenellus nevadensis 221, 223
Olenellus schucherti 278
Olenellus terminalis 223
Olenidae 204
OLENINA 198, 204
Oleninae 204
Olenoides 103, 106, 255, 257, 258, 272
Olenoides inflatus 262, 496
Olenoides nevadensis 254, 257
Olenoides parapactus 232
Olenoides pugio 262
Olenoides serratius 72, 76, 169
Olenoides superbus 52, 63, 92, 99, 261, 262
Olenus 43, 98
Olenus truncatus 109
Olenus wahlenbergi 109
Onchonotellus 139
Onchotopidae 201
Onnia 69, 99, 348
ontogenesis 77
Opabinia 103
Opipuer 42, 97, 100
Opipueridae 194
opisthothorax 55
Opsiocidus 48
Orobiidae 170
Ornamentaspis usitata 225
Orometopidae 196
Oryctocephalidae 169
Oryctocephalus 169
Oryctocephalus indicus 233
Orygmaspis contracta 281
Orygmaspis sp., Type 1 282
Orygmaspis sp., Type 2 281
Orygmaspis sp., Type 3 282
Orygmaspis sp., Type 4 282
Quadrops flexuosa 52, 93, 95, 399

R

Raaschichnus 112
rachis 29
radial lamellae 42
Radiaspis 143, 396
Radiaspis comest 410, 425
Radnorial simplex 148, 150
Raphiophoridae 196
Raphiophorites 189, 196
Raymonditides 188
Redlichia 166
Redlichia takooensis 89, 166
REDLICHIIDA 164
REDLICHIINA 166
Redlichioidea 166
Redeops bronni 392
Redeops cephalotes hamlagdadianus 391
Redeops maurus 392
Rejkocephalus knizeki 245
Rejkocephalus rotundatus 244, 247
Remopleurides 43, 194
Remopleurides nanus 194, 326
Remopleuridoidea 189
REMOPLEURIDOIDEA 194
Repinaella 26
Resserops 166
Retamaspis melendezi 309
Rhabinopora flabelliformis flabelliformis 139
Rhenops cf. anserinus 372, 373
Rhenops 75
ridges or terracing 70
Rorringiidae 187
rostral plate 41
rostrellum 41
Rotadiscus 295
Rusophycus 111, 113
Rusophycus dispar 107

S

Saharops bensaidi 45, 396
Saltaspis 204
salerian
 mode 80
 position 80
Salterocoryphe 309, 310
Salterocoryphe salteri 176, 311
Sanctacaris 18, 89
Sao hisruta 250
Sardasps laticeps 137, 140
Sardaspis papillosa 137
Sardoites pillolai 143
Sardodelicchia arenivaga 137
Sardodelicchia carinata 137
Sardodelicchia frabouleti 140
Sarrabesia teichmuelleri 145, 148
Saukia 193
Saukiidae 193
Scabriscutellum 63, 168, 400
Schinderhannes bartelsi 88, 90
Schizoramia 22
Schizostylus brevicaudatus 380
Schmalenseeia fusilis 55
sculptures 66
Scutellum 425
Scutellum geense 412
Scutellum n. sp. aff. pustulatum 400
Seleneceme 98, 128, 189, 196
Selenocybele platyura (nomen nudum), 74, 270
Selenopelatis 171
Selenopelatis aff. kamila 311
Selenopelatis buchii 9, 57
Selenopelatis gallica 310
Selenopelatis inermis beyrichi 457
Selenopelatis longispinus 347
Selenopelatis macroptalma 311
sensillae 31
sensory spines 56
Serrania 26
Serrania gordaensis 25
Sharyiidae 188
Shirakiellidae 170
Shumardiiidae 201
Shumardoella 201
Shumardoella (Conophrys) salopiensis 78
Sinodiscus 26
Skenia 18
Skenia sundbergi 23, 234
Skioildia alnna 209
Skreiaspis spinosa 245, 252
Skreiaspis briensis 139
Solenopleuridae 201
Solenopleuropsis (Manublesia) ribeiro 138
Solenopleuropsis (Manublesia) thorali 138
Soomasps 18
Soomasps splendida 207
Spathacalymene nasuta 176
Spence Shale member 236
Spencia 241
Spencia typicalis 242
Sphaeragnostus 144
Sphaerexochus 129
Sphaerocrinopsis robusta 63, 338
Sphaerophthalmus 43
Sphaerophthalmus alatus 43, 44
Sphooceras truncatum 83
spines 67
Spinibole (Coombewoodia) coddonen- sis 444
Spriggina floundersi 22, 25
stalked eyes 48

General Index
This index lists the genera and species of trilobites that are illustrated or discussed in this volume. Species are listed in alphabetical order.

We were not always able to determine the author who first officially described the species and, in those cases, the entry for that column has been left blank. A page number in bold face refers the reader to photographic material, while normal type corresponds to a description or other mention in the text.

The final columns on the right reports the order to which the species belongs: AGN (Agnostida), ASA (Asaphida), COR (Corynexochida), HAR (Harpetida), LIC (Lichida), NEK (Nektaspida), ODO (Odontopleurida), PHA (Phacopida), PRO (Proetida), PTY (Ptychopariida), RED (Redlichiida), UND (Undetermined), and the geological period in which they lived.

The reader is referred to Jell & Adrain (2003) for more in-depth information. Authors’ names were taken from their work as well as from the Index to Organism Names (ION) site: http://www.organism-names.com/.

<table>
<thead>
<tr>
<th>Species Name</th>
<th>Author(s) and Year</th>
<th>Page(s)</th>
<th>Order</th>
<th>Suborder</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abadiella hupe</td>
<td>Hupe, 1953</td>
<td>26</td>
<td>RED Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadolemus snajdri</td>
<td>Force & Kordule, 1980</td>
<td>251</td>
<td>PTY Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidoparadoxides briaeus</td>
<td>Geyer, 1993</td>
<td>225, 226, 227, 228, 229</td>
<td>RED Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidoparadoxides sirokyi</td>
<td>Snaher, 1985</td>
<td>246</td>
<td>RED Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acanthopleura ghoem</td>
<td>Groh, 1902</td>
<td>79, 98</td>
<td>PTY Ord</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acanthopleura stipulacea</td>
<td>Fortey & Rusthon, 1980</td>
<td>13</td>
<td>PTY Ord</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acanthopyge haugle & corda</td>
<td>Hawle & Corda, 1847</td>
<td>62, 63, 385</td>
<td>LIC Dev</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acanthopyge consanguinea</td>
<td>Clarke, 1894</td>
<td>85, 364</td>
<td>LIC Dev</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acastavalia cf. schmidt</td>
<td>Richter, 1909</td>
<td>421</td>
<td>PHA Dev</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acastoides</td>
<td>Delo, 1935</td>
<td>427</td>
<td>PHA Dev</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achatella achates</td>
<td>Billings, 1860</td>
<td>339</td>
<td>PHA Ord</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achatella stipulare</td>
<td>Lembergova, 1951</td>
<td>174</td>
<td>ODO Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidaspides praecurrens</td>
<td>Murchison, 1839</td>
<td>83</td>
<td>ODO Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidaspis jezzi</td>
<td>Perry & Chatterton, 1979</td>
<td>107</td>
<td>ODO Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidaspis lucersiana</td>
<td>Schmidt, 1885</td>
<td>173, 317</td>
<td>ODO Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acropleurinae</td>
<td>Haas & Hains, 1987</td>
<td>132</td>
<td>PRO Per</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agnostus</td>
<td>36, 16, 161</td>
<td>AGN Cam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agnostus peliformis</td>
<td>Linnaneus, 1757</td>
<td>72, 73, 101</td>
<td>AGN Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agraularia</td>
<td>Hawle & Corda, 1847</td>
<td>138, 139</td>
<td>PTY Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agraularia cericephalus</td>
<td>Barrande, 1846</td>
<td>203, 251</td>
<td>PTY Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alitellina</td>
<td>Walscot, 1908</td>
<td>224</td>
<td>COR Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alichennus</td>
<td>Ramskold, Adrain, Eidcomb & Sweter, 1994</td>
<td>203</td>
<td>PTY Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldonina ornata</td>
<td>Lembergova, 1940</td>
<td>350</td>
<td>LIC Ord</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allochilla halli</td>
<td>Foreste, 1888</td>
<td>63, 202, 237</td>
<td>PTY Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allochilinae</td>
<td>Jost, 1888</td>
<td>70, 256</td>
<td>PTY Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alitoctopus drumensis</td>
<td>Sundberg, 1994</td>
<td>254</td>
<td>PTY Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alitoctopus hartsi</td>
<td>Robison, 1971</td>
<td>254</td>
<td>PTY Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amecephalus idahoense</td>
<td>Resser, 1939</td>
<td>237</td>
<td>PTY Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amecephalus laticauda</td>
<td>Resser, 1939</td>
<td>238</td>
<td>PTY Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amecephalus packi</td>
<td>Resser, 1935</td>
<td>237</td>
<td>PTY Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amecephalus piochensis</td>
<td>Walscot, 1886</td>
<td>240</td>
<td>PTY Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ameropiltonia lauradanae</td>
<td>Breznik, 2000</td>
<td>437</td>
<td>PRO Car</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammagnostus laiwuensis</td>
<td>Lorenz, 1906</td>
<td>162, 264</td>
<td>AGN Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphichlais</td>
<td>Raymond, 1905</td>
<td>342</td>
<td>LIC Ord</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphichlais cf. A. confrons</td>
<td>Reidelmann, 1916</td>
<td>336</td>
<td>LIC Ord</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphichlais cornutus</td>
<td>Clarke, 1894</td>
<td>336</td>
<td>LIC Ord</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplifallosaspis</td>
<td>Hollingsworth, 2007</td>
<td>26</td>
<td>RED Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampyx</td>
<td>Dalman, 1827</td>
<td>36, 145, 196</td>
<td>ASA Ord</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampyx cf. prisca</td>
<td>Thoral, 1935</td>
<td>121, 196, 287</td>
<td>ASA Ord</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampyx nasutus</td>
<td>Dalman, 1827</td>
<td>57, 196, 315</td>
<td>ASA Ord</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antagavia</td>
<td>Kim, 1997</td>
<td>57, 400</td>
<td>COR Dev</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anisopyge</td>
<td>Grish, 1908</td>
<td>131</td>
<td>PRO Per</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anomocare</td>
<td>Horn & Westergaard, 1930</td>
<td>191</td>
<td>ASA Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anomoacarenoides</td>
<td>Lembergova, 1940</td>
<td>191</td>
<td>ASA Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anopodinae cf. henrici</td>
<td>Saltier, 1864</td>
<td>139</td>
<td>RED Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antatlasia</td>
<td>Hupe, 1953</td>
<td>256</td>
<td>PTY Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apatolestes</td>
<td>Kobayashi, 1934</td>
<td>292</td>
<td>ASA Ord</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aratopilae</td>
<td>Harrington & Leanza, 1957</td>
<td>196, 197</td>
<td>ASA Ord</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Araphoia spathulata</td>
<td>Miller, 1936</td>
<td>264</td>
<td>PTY Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archaeaspis</td>
<td>Repina, (in Kimentovsky & Repina, 1965)</td>
<td>26</td>
<td>RED Cam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archeonous (Laevibole) laevicauda</td>
<td>Sariss, 1857</td>
<td>441, 442</td>
<td>PRO Car</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archeonous (Phililbole) caulirucus</td>
<td>Breuckmann, 1981</td>
<td>441</td>
<td>PRO Car</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Archeognathus (Phillibole) neheinenensis | Hahn & Hain, 1969 | 442, 443 | PRO Car
| Archeognathus (Phillibole) pollenii | Woodward, 1894 | 443 | PRO Car
| Arcinurus | Castelnau, 1843 | 172 | ODO Sil
| Arcinurus bohmi | Brady, 1825 | 63, 67, 74, 356 | LIG Sil
| Arthrorachis tarda | Barrande, 1846 | 144 | AGN Cam
| Asaphellina | Callaway, 1877 | 121, 144, 145, 287 | ASA Ord
| Asaphellina cf. feroxuataensis | Vidal, 1998 | 207 | ASA Ord
| Asaphellina stubbi | Forsey, 2009 | 207 | ASA Ord
| Asaphellina tolandus | Gil Cid, 1976 | 301 | ASA Ord
| Asaphiscus | Meek, 1873 | 201 | ASA Cam
| Asaphiscus wheeleri | Meek, 1873 | 201, 254, 255 | ASA Cam
| Asaphopoides | Hope, 1955 | 191 | ASA Ord
| Asaphus | Brams, 1822 | 35, 108 | ASA Ord
| Asaphus delphinus | Lawrow, 1856 | 315 | ASA Ord
| Asaphus expansus | Dalman, 1827 | 42, 45 | ASA Ord
| Asaphus holmi | Schmid, 1901 | 316 | ASA Ord
| Asaphus kowalewskii | Lawrow, 1856 | 48, 103, 316 | ASA Ord
| Asaphus lepidurus | Nieszkowski, 1859 | 52 | ASA Ord
| Asaphus platyrus | Angelin, 1854 | 315 | ASA Ord
| Asaphus punctatus | Lenikova, 1949 | 315, 325 | ASA Ord
| Asaphus raniiceps | Dalman, 1828 | 36, 44, 315 | ASA Ord
| Asaphus robustus | Hale & Corda, 1847 | 315 | ASA Ord
| Asteropyge | Hale & Corda, 1847 | 72, 75 | PHA Dev
| Asteropyge comma | Basie, 2003 | 405 | PHA Dev
| Asteropyge longispinosa | Beckert & Klever, 2007 | 9, 405 | PHA Dev
| Asteropyge pruensensis | Basie, 2003 | 421 | PHA Dev
| Asteropyge punctata | Steininger, 1831 | 415 | PHA Dev
| Athetaiakia bitius | Walcott, 1916 | 169, 238 | COR Cam
| Australcephala | Hale & Corda, 1847 | 98, 187 | PRO Sil
| Australcephala konincki | Barrande, 1846 | 109, 187 | PRO Sil
| Australiana | Opik, 1967 | 191 | ASA Cam
| Austerops smoothops | Chatterton, Forsey, Brett, Gill & McKellar, 2006 | 394 | PHA Dev
| Ballelia | Matthew, 1885 | 60, 138 | PTY Cam
| Ballella cf. levyi | Menier-Chalmas & Bergeron, 1889 | 139 | PTY Cam
| Balcoracania | Pocock, 1970 | 166 | RED Cam
| Balcoracania dailyi | Pocock, 1970 | 55, 120 | RED Cam
| Balizaoma | Holloway, 1980 | 146 | PHA Sil
| Balnabbari | Forsey, 1974 | 98, 204 | PTY Dev
| Barrandeops | McKellar & Chatterton, 2009 | 393 | PTY Dev
| Barrandeops forseyi | McKellar & Chatterton, 2009 | 394 | PHA Dev
| Barrandeops granulops | Chatterton, Forsey, Brett, Gill & McKellar, 2006 | 395 | PHA Dev
| Barrandeops ovatus | McKellar & Chatterton, 2009 | 393 | PHA Dev
| Basiliscus (Basiliscus) vidali | Corracho & Vela, 2010 | 289 | ASA Ord
| Bathyncheles | Holub, 1908 | 176 | PHA Ord
| Bathyncheles castiliani | Hambam, 1983 | 301 | PHA Ord
| Bathynothus haeckelowsienis | Lu | 232 | RED Cam
| Bathyscuriscus | Meek, 1873 | 258 | COR Cam
| Bathyscuriscus rotundatus | Rominger, 1887 | 188 | COR Cam
| Bathyscuriscus wassatchensis | Reisser, 1939 | 80, 241 | COR Cam
| Bavarilla | Barrande, 1968 | 176 | PHA Ord
| Bellenopyge ballivi | Pek & Vanek, 1991 | 376 | LIC Dev
| Bellenopyge branikensis | Barrande, 1872 | 389 | LIC Dev
| Beltheola abruptirhachis | Reiter & Richter, 1919 | 153 | PRO Dev
| Bellacartwrightia callitetea | Green, 1837 | 63, 180, 430, 431 | PHA Dev
| Bigotina | Corhold, 1935 | 26 | PTY Cam
| Blackwelderia sinensis | Bergeron, 1899 | 174 | LIC Cam
| Boedops exsicer | Whittington & Bohlin, 1958 | 57, 173, 317 | ODO Ord
| Bohemilla | Barrande, 1872 | 194 | ASA Ord
| Bohemoharpes | Vanek, 1963 | 83 | HAR Sil
| Bohemoharpes acuminatus | Breyrich | 84, 206, 361 | HAR Sil
| Bopoascelatum campaniferum | Reisser, 1937 | 44 | COR Dev
| Bolaspidea | Reisser, 1937 | 202, 259 | PTY Cam
| Bolaspidea housenensis | Walcott, 1886 | 255 | PTY Cam
| Bollandia globiceps | Phillips, 1836 | 186, 434, 435 | PRO Car
| Bonnia | Walcott, 1916 | 26 | COR Cam
| Bornemannaspis solitaria | Bornemann, 1888 | 137 | RED Cam
| Boulea dagini | Uchberg, 1992 | 376 | PHA Dev
| Bowmanilla americana | Walcott, 1884 | 38 | HAR Cam
| Brachyspidion micros | Robinson, 1971 | 256 | PTY Cam
| Brachyspidion salcata | Robinson, 1964 | 255 | PTY Cam
| Brachymetopus | McCoy, 1847 | 131, 187 | PRO Per
| Brachystelemaspis | McCoy, 1847 | 26 | PRO Car
| Breizkops bigranulosus | Mozadnic, 1983 | 422 | PHA Dev
| Breviscutellum | Snodar, 1960 | 367 | COR Dev
| Bristolia bristolensis | Reisser, 1928 | 165, 221 | RED Cam
| Bristolia fragilis | Palmer & Halliday, 1979 | 11, 223 | RED Cam
| Bristolia insolens | Reisser, 1928 | 11, 221, 224 | RED Cam
| Bristolia mohavensis | Hazzard & Cheekman, 1933 | 63, 221 | RED Cam
| Bulasideas | Lermontova in Chernysheva, 1956 | 161 | PTY Ord
| Bumastoides hoelé | Foreste, 1920 | 52, 63, 99, 338, 344 | COR Ord
| Bumastoides porrectus | Reynolds, 1925 | 338 | COR Ord
| Bumastus | Murchison, 1839 | 98, 167, 308 | COR Sil
| Bumastus ioax | Hall, 1852 | 357 | COR Sil
| Burlingia ovata | Zhou & Yuan, 1980 | 232 | UND Cam

Index to named or illustrated trilobites
<table>
<thead>
<tr>
<th>Name</th>
<th>Year</th>
<th>Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burmeisterella armata</td>
<td>1843</td>
<td>Burmeister</td>
</tr>
<tr>
<td>Calodiscus foliatus</td>
<td>1935</td>
<td>Howell</td>
</tr>
<tr>
<td>Calycopsetum</td>
<td>1994</td>
<td>Archinal</td>
</tr>
<tr>
<td>Calymene</td>
<td>1822</td>
<td>Bronn</td>
</tr>
<tr>
<td>Calymene neotuberulata</td>
<td>1970</td>
<td>Schrank</td>
</tr>
<tr>
<td>Calymene breviceps</td>
<td>1916</td>
<td>Raymond</td>
</tr>
<tr>
<td>Calymene niagaraensis</td>
<td>1852</td>
<td>Hall</td>
</tr>
<tr>
<td>Calymene poligi</td>
<td>1996</td>
<td>Siever & Chatterton</td>
</tr>
<tr>
<td>Calymene tuberculata</td>
<td>1885</td>
<td>Brücknich</td>
</tr>
<tr>
<td>Calymenella boisseli</td>
<td>1890</td>
<td>Bergeson</td>
</tr>
<tr>
<td>Calyptrades caliccephalus</td>
<td>1847</td>
<td>Cambronyxella</td>
</tr>
<tr>
<td>Cambronyxella</td>
<td>2001</td>
<td>Liebermann</td>
</tr>
<tr>
<td>Cambrupallas telesto</td>
<td>1993</td>
<td>Geyer</td>
</tr>
<tr>
<td>Carbonocoryphe (Winterbergia) suprapherencia</td>
<td>2000</td>
<td>Hain & Mueller</td>
</tr>
<tr>
<td>Carbonocoryphe suprapherencia</td>
<td>1950</td>
<td>Richter & Richter</td>
</tr>
<tr>
<td>Carolinites</td>
<td>1940</td>
<td>Korbiasni</td>
</tr>
<tr>
<td>Cardasia minor</td>
<td>1924</td>
<td>Walcott</td>
</tr>
<tr>
<td>Cederina schachi</td>
<td>2009</td>
<td>Adrain, Peters & Westrop</td>
</tr>
<tr>
<td>Celmus</td>
<td>1854</td>
<td>Angelin</td>
</tr>
<tr>
<td>Cephalopyge notabilis</td>
<td>1988</td>
<td>Geyer</td>
</tr>
<tr>
<td>Ceratozarglas</td>
<td>1919</td>
<td>Liebermann</td>
</tr>
<tr>
<td>Cerataspides</td>
<td>1839</td>
<td>Goldfuss</td>
</tr>
<tr>
<td>Cerataspides armatus</td>
<td>1909</td>
<td>Richter</td>
</tr>
<tr>
<td>Cerataspides berolinensis</td>
<td>1949</td>
<td>Prani & Pribyl</td>
</tr>
<tr>
<td>Cerataspides icarus</td>
<td>1847</td>
<td>Hawle & Coria</td>
</tr>
<tr>
<td>Ceraurus incanus</td>
<td>1860</td>
<td>Billings</td>
</tr>
<tr>
<td>Ceraurus marginatus</td>
<td>1832</td>
<td>Bartion</td>
</tr>
<tr>
<td>Ceraurus</td>
<td>1832</td>
<td>Green</td>
</tr>
<tr>
<td>Ceraurus globolobatus</td>
<td>1930</td>
<td>Bradley</td>
</tr>
<tr>
<td>Ceraurus pleurexanthemns</td>
<td>1832</td>
<td>Green</td>
</tr>
<tr>
<td>Cernuslimbus cf. pegakanthodes</td>
<td>1992</td>
<td>Peate</td>
</tr>
<tr>
<td>Chancia ebdome</td>
<td>1924</td>
<td>Walcott</td>
</tr>
<tr>
<td>Chasmosps prurscurrens</td>
<td>1881</td>
<td>Schmidt</td>
</tr>
<tr>
<td>Chasmosps refferet</td>
<td>1919</td>
<td>Richter</td>
</tr>
<tr>
<td>Chethiraspis</td>
<td>1897</td>
<td>Dener</td>
</tr>
<tr>
<td>Chethiraspis koizimii</td>
<td>1982</td>
<td>Korbiasni & Hamada</td>
</tr>
<tr>
<td>Cheirurus</td>
<td>1845</td>
<td>Bayerich</td>
</tr>
<tr>
<td>Cheirurus (Criotephalaspis) gaugtermi</td>
<td>1962</td>
<td>Alberti</td>
</tr>
<tr>
<td>Chiasmatia keyserbergi</td>
<td>1846</td>
<td>Barrande</td>
</tr>
<tr>
<td>Chocleocaps ferrandini</td>
<td>1880</td>
<td>Kayser</td>
</tr>
<tr>
<td>Choubertella</td>
<td>1953</td>
<td>Hupé</td>
</tr>
<tr>
<td>Chiaflia cf. latavegaenae</td>
<td>1949</td>
<td>Wilson</td>
</tr>
<tr>
<td>Colpocoryphe</td>
<td>1918</td>
<td>Novak & Perner</td>
</tr>
<tr>
<td>Colpocoryphe bohemica</td>
<td>1965</td>
<td>Vanek</td>
</tr>
<tr>
<td>Colpocoryphe rouaultian</td>
<td>1970</td>
<td>Hensy</td>
</tr>
<tr>
<td>Colpocoryphe thorali</td>
<td>1966</td>
<td>Dean</td>
</tr>
<tr>
<td>Colphanea</td>
<td>1997</td>
<td>Liebermann & Kloc</td>
</tr>
<tr>
<td>Comptonaspinis</td>
<td>1988</td>
<td>Breznik</td>
</tr>
<tr>
<td>Comptonaspinis swallowi</td>
<td>1855</td>
<td>Shumard</td>
</tr>
<tr>
<td>Comura</td>
<td>1926</td>
<td>Richter & Richter</td>
</tr>
<tr>
<td>Comura bulynckyi</td>
<td>2001</td>
<td>Morzade</td>
</tr>
<tr>
<td>Condelypyge ed</td>
<td>1998</td>
<td>Geyer</td>
</tr>
<tr>
<td>Conocoryphe</td>
<td>1847</td>
<td>Hawle & Coria</td>
</tr>
<tr>
<td>Conocoryphe cf. brevifrons</td>
<td>1948</td>
<td>Thoril</td>
</tr>
<tr>
<td>Conocoryphe cirina</td>
<td>1846</td>
<td>Barrande</td>
</tr>
<tr>
<td>Conocoryphe sulzerni</td>
<td>1823</td>
<td>Schlotheim</td>
</tr>
<tr>
<td>Conophilopis</td>
<td>1963</td>
<td>Roberts</td>
</tr>
<tr>
<td>Conosella</td>
<td>1936</td>
<td>Lochman</td>
</tr>
<tr>
<td>Coasia</td>
<td>1911</td>
<td>Walcott</td>
</tr>
<tr>
<td>Cordania</td>
<td>1892</td>
<td>Clarke</td>
</tr>
<tr>
<td>Cordania fulcata</td>
<td>1960</td>
<td>Whittington</td>
</tr>
<tr>
<td>Cordania weissmani</td>
<td>1997</td>
<td>Adrain & Kloc</td>
</tr>
<tr>
<td>Corneproetus</td>
<td>1919</td>
<td>Richter & Richter</td>
</tr>
<tr>
<td>Corneproetus beecheeri</td>
<td>1926</td>
<td>Ruedemann</td>
</tr>
<tr>
<td>Corneproetus cornutus coalut</td>
<td>1843</td>
<td>Goldfuss</td>
</tr>
<tr>
<td>Coronecephalus</td>
<td>1924</td>
<td>Gobar</td>
</tr>
<tr>
<td>Corrugatommacer</td>
<td>1939</td>
<td>Korbiasni</td>
</tr>
<tr>
<td>Coryneocoryphe latus</td>
<td>1972</td>
<td>Rasetti</td>
</tr>
<tr>
<td>Coryneocoryphe sardous</td>
<td>1972</td>
<td>Rasetti</td>
</tr>
<tr>
<td>Crotus</td>
<td>1852</td>
<td>Barrande</td>
</tr>
<tr>
<td>Crotalocoryphina gibbus</td>
<td>1845</td>
<td>Bayerich</td>
</tr>
<tr>
<td>Crotanaspis kerforni</td>
<td>1970</td>
<td>Clarkson & Hensy</td>
</tr>
<tr>
<td>Crotanaspis morenensis</td>
<td>1972</td>
<td>Hammann</td>
</tr>
<tr>
<td>Crotanaspis struvei</td>
<td>1968</td>
<td>Hensy</td>
</tr>
<tr>
<td>Cryptaspis aequostratena</td>
<td>1923</td>
<td>Kozlowski</td>
</tr>
<tr>
<td>Cryptaspis</td>
<td>1832</td>
<td>Green</td>
</tr>
<tr>
<td>Cryptaspis bellus</td>
<td>1878</td>
<td>Ulrich</td>
</tr>
<tr>
<td>Cryptaspis tesselatus</td>
<td>1832</td>
<td>Green</td>
</tr>
<tr>
<td>Ctenocephalus</td>
<td>1847</td>
<td>Hawle & Coria</td>
</tr>
<tr>
<td>Ctenocephalus (Hartelgia) cf. terranovicus</td>
<td>1937</td>
<td>Riesser</td>
</tr>
<tr>
<td>Ctenocephalus coronatus</td>
<td>1846</td>
<td>Barrande</td>
</tr>
<tr>
<td>Ctenopyge</td>
<td>1880</td>
<td>Linnarson</td>
</tr>
<tr>
<td>Cumingellia belisama belisama</td>
<td>1985</td>
<td>Hain & Brauckmann</td>
</tr>
<tr>
<td>Cybele</td>
<td>1846</td>
<td>Lövén</td>
</tr>
</tbody>
</table>

Index to named or illustrated trilobites

486
<table>
<thead>
<tr>
<th>Trilobite Name</th>
<th>Author, Year</th>
<th>Index Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cybele bellatula</td>
<td>Dalman, 1826</td>
<td>48, 61, 316</td>
</tr>
<tr>
<td>Cybeloides plana</td>
<td>Sinclair, 1944</td>
<td>320</td>
</tr>
<tr>
<td>Cybeluris</td>
<td>Levitsky, 1962</td>
<td>77</td>
</tr>
<tr>
<td>Cyclopyge</td>
<td>Hawle & Corda, 1847</td>
<td>98, 100, 102, 195</td>
</tr>
<tr>
<td>Cyclopyge marginata</td>
<td>Hawle & Corda, 1847</td>
<td>144</td>
</tr>
<tr>
<td>Cyphaspis</td>
<td>Burmeister, 1843</td>
<td>57, 187, 387, 422</td>
</tr>
<tr>
<td>Cyphaspis balanops</td>
<td>Erben, 1953</td>
<td>407</td>
</tr>
<tr>
<td>Cyphaspis carrolli</td>
<td>Adrain & Kloock, 1997</td>
<td>366</td>
</tr>
<tr>
<td>Cyphaspis ceratopthalmus</td>
<td>Golinski, 1843</td>
<td>407, 428</td>
</tr>
<tr>
<td>Cyphaspis gaultheri</td>
<td>Rouallé, 1851</td>
<td>422</td>
</tr>
<tr>
<td>Cyrtometopella</td>
<td>Novelain, 1961</td>
<td>318</td>
</tr>
<tr>
<td>Cyrtometopus clavifrons</td>
<td>Dalman, 1827</td>
<td>318</td>
</tr>
<tr>
<td>Cyrtometopus semisubaeus</td>
<td>Eichwald, 1840</td>
<td>318, 319</td>
</tr>
<tr>
<td>Dagevinaspis</td>
<td>Heup, 1953</td>
<td>18, 26</td>
</tr>
<tr>
<td>Dalmanites</td>
<td>Barrande, 1892</td>
<td>38</td>
</tr>
<tr>
<td>Dalmanites lamarmorae</td>
<td>Mengehini, 1880</td>
<td>135, 142</td>
</tr>
<tr>
<td>Dalmanites liminarus</td>
<td>Green, 1832</td>
<td>179, 356, 357</td>
</tr>
<tr>
<td>Dalmanites meneghini</td>
<td>Vinassa, 1927</td>
<td>142</td>
</tr>
<tr>
<td>Dalmanitina</td>
<td>Reed, 1905</td>
<td>152</td>
</tr>
<tr>
<td>Dalmanitina (Dalmanitina) acuta</td>
<td>Barrande, 1846</td>
<td>47, 119</td>
</tr>
<tr>
<td>Damesella paronai</td>
<td>Abagie, 1902</td>
<td>174</td>
</tr>
<tr>
<td>Dawsonia</td>
<td>Hart in Dawson, 1868</td>
<td>138</td>
</tr>
<tr>
<td>Deaneaspis goldfusii fluviensis</td>
<td>Barrande, 1846</td>
<td>143, 148</td>
</tr>
<tr>
<td>Deaneaspis novarsae</td>
<td>Hamann & Leon, 1997</td>
<td>150</td>
</tr>
<tr>
<td>Dechenelle daunerei</td>
<td>Van Viersen & Piersch, 2008</td>
<td>68, 417</td>
</tr>
<tr>
<td>Dechenelle verneuili</td>
<td>Barrande, 1852</td>
<td>417</td>
</tr>
<tr>
<td>Declivolithus aff. alfredi</td>
<td>Zelisko, 1906</td>
<td>347</td>
</tr>
<tr>
<td>Dogemella</td>
<td>Marek, 1961</td>
<td>97, 99, 100, 102</td>
</tr>
<tr>
<td>Dogemella muda</td>
<td>Walcott, 1916</td>
<td>195</td>
</tr>
<tr>
<td>Deltacephalus aster</td>
<td>Walcott, 1917</td>
<td>11, 57, 20, 265</td>
</tr>
<tr>
<td>Delgadella</td>
<td>Walcott, 1912</td>
<td>26</td>
</tr>
<tr>
<td>Deliacephalaspis magister</td>
<td>Eldredge & Brandis, 1980</td>
<td>377</td>
</tr>
<tr>
<td>Densonella semelae</td>
<td>Walcott, 1916</td>
<td>92</td>
</tr>
<tr>
<td>Diacalymene</td>
<td>Read, 1905</td>
<td>357</td>
</tr>
<tr>
<td>Diacanthaspis (Acantholoma) minuta</td>
<td>Barrande, 1846</td>
<td>173</td>
</tr>
<tr>
<td>Diacanthaspis parvula</td>
<td>Walcott, 1877</td>
<td>343</td>
</tr>
<tr>
<td>Diademoprocessus</td>
<td>Alberti, 1964</td>
<td>418</td>
</tr>
<tr>
<td>Diademoprocessus holzogelfi</td>
<td>Novak, 1980</td>
<td>427</td>
</tr>
<tr>
<td>Diademoprocessus praecursor</td>
<td>Alberti, 1969</td>
<td>186</td>
</tr>
<tr>
<td>Dicantopyge</td>
<td>Palmer, 1965</td>
<td>80, 279</td>
</tr>
<tr>
<td>Dicranopeltis nereus</td>
<td>Hall, 1863</td>
<td>357</td>
</tr>
<tr>
<td>Dicranopeltis ulibali</td>
<td>Hamann & Leon, 2007</td>
<td>143</td>
</tr>
<tr>
<td>Dicranurus</td>
<td>Conrad, 1841</td>
<td>173</td>
</tr>
<tr>
<td>Dicranurus hamatus elegantus</td>
<td>Campbell, 1977</td>
<td>57, 368</td>
</tr>
<tr>
<td>Dicranurus menghi</td>
<td>Hamann & Leon, 2007</td>
<td>143</td>
</tr>
<tr>
<td>Dicranurus monstrosus</td>
<td>Barrande, 1852</td>
<td>57, 398</td>
</tr>
<tr>
<td>Dikelocephalus</td>
<td>Owen, 1852</td>
<td>193</td>
</tr>
<tr>
<td>Dikelocephalus gracilis</td>
<td>Urich & Resser, 1930</td>
<td>193</td>
</tr>
<tr>
<td>Dikelocephalinia</td>
<td>Brogger, 1896</td>
<td>292</td>
</tr>
<tr>
<td>Dimerygone</td>
<td>Opik, 1937</td>
<td>184</td>
</tr>
<tr>
<td>Dioniidae</td>
<td>Barrande, 1847</td>
<td>36, 197</td>
</tr>
<tr>
<td>Dioniidae marckii</td>
<td>Henry & Romano, 1978</td>
<td>301, 311</td>
</tr>
<tr>
<td>Diplognostus</td>
<td>Jaeckel, 1909</td>
<td>138</td>
</tr>
<tr>
<td>Dipleura dekayi</td>
<td>Green, 1832</td>
<td>176, 378</td>
</tr>
<tr>
<td>Ditomopyge</td>
<td>Newell, 1931</td>
<td>131</td>
</tr>
<tr>
<td>Ditomopyge fuscus</td>
<td>Grant, 1966</td>
<td>132</td>
</tr>
<tr>
<td>Dohniella</td>
<td>Luteke, 1990</td>
<td>418</td>
</tr>
<tr>
<td>Dohniella delwdei</td>
<td>Van Viersen, 2006</td>
<td>418</td>
</tr>
<tr>
<td>Dolorelemus</td>
<td>Leanza, 1949</td>
<td>166</td>
</tr>
<tr>
<td>Dolorelemus bifidus</td>
<td>Boremai, 1891</td>
<td>140</td>
</tr>
<tr>
<td>Dolorelemus courtessolei</td>
<td>Pilloa, 1991</td>
<td>140</td>
</tr>
<tr>
<td>Dolorelemus longisculatus</td>
<td>Pilloa, 1991</td>
<td>137</td>
</tr>
<tr>
<td>Dolorelemus zoppii</td>
<td>Meneghini, 1882</td>
<td>135, 140</td>
</tr>
<tr>
<td>Doryrgyge</td>
<td>Dames, 1883</td>
<td>138</td>
</tr>
<tr>
<td>Drepanura</td>
<td>Bergeron, 1899</td>
<td>174</td>
</tr>
<tr>
<td>Drepanura promescul</td>
<td>Bergeron, 1899</td>
<td>174</td>
</tr>
<tr>
<td>Dresbachia amata</td>
<td>Walcott, 1916</td>
<td>266, 277</td>
</tr>
<tr>
<td>Dreyfussina exophthalmica</td>
<td>Dreyfuss, 1948</td>
<td>143, 145</td>
</tr>
<tr>
<td>Dreyfussina straevesi</td>
<td>Deinbismes, 1963</td>
<td>145</td>
</tr>
<tr>
<td>Drotops armatus</td>
<td>Strove, 1995</td>
<td>57, 178, 211, 388, 474</td>
</tr>
<tr>
<td>Drotops megalexandricus</td>
<td>Strove, 1990</td>
<td>46</td>
</tr>
<tr>
<td>Ductina ducifrons</td>
<td>Richter & Richter, 1923</td>
<td>178</td>
</tr>
<tr>
<td>Ecceparadoxides pusillus</td>
<td>Barrande, 1846</td>
<td>244, 247</td>
</tr>
<tr>
<td>Ecceparadoxides rohanicus</td>
<td>Snodgr, 1986</td>
<td>245</td>
</tr>
<tr>
<td>Eccoptochile alabamensis</td>
<td>Romano, 1980</td>
<td>303, 311, 312</td>
</tr>
<tr>
<td>Eccoptochile impedita</td>
<td>Hamann, 1972</td>
<td>143</td>
</tr>
<tr>
<td>Eccoptochile tumifrons</td>
<td>Hamann & Leon, 2007</td>
<td>145</td>
</tr>
<tr>
<td>Ecctienua</td>
<td>Saltier, 1867</td>
<td>167</td>
</tr>
<tr>
<td>Ecctienua gigantea</td>
<td>Boremai, 1843</td>
<td>302, 311, 312</td>
</tr>
<tr>
<td>Eldredgeops rana</td>
<td>Stumm, 1953</td>
<td>47, 61, 78, 80, 430, 431</td>
</tr>
<tr>
<td>Eldredgeops rana crassithoraculata</td>
<td>Stumm, 1954</td>
<td>29, 52</td>
</tr>
<tr>
<td>Elkanaspis</td>
<td>Ludwig, 1982</td>
<td>194</td>
</tr>
<tr>
<td>Ellipsoccephalus</td>
<td>Zenger, 1833</td>
<td>42, 60, 98</td>
</tr>
</tbody>
</table>

Index to named or illustrated trilobites

487
<table>
<thead>
<tr>
<th>Name</th>
<th>Author, Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heliopyge troaonensis</td>
<td></td>
</tr>
<tr>
<td>Gemelloides delasernai</td>
<td></td>
</tr>
<tr>
<td>Geesops sparsinodosus gallicus</td>
<td></td>
</tr>
<tr>
<td>Enocrinurus macourus</td>
<td></td>
</tr>
<tr>
<td>Entomaspis</td>
<td></td>
</tr>
<tr>
<td>Ulrich in Bridge, 1931</td>
<td></td>
</tr>
<tr>
<td>Eusalmanitina destombesi</td>
<td></td>
</tr>
<tr>
<td>Eosulmanitina</td>
<td></td>
</tr>
<tr>
<td>Eoharpes</td>
<td></td>
</tr>
<tr>
<td>Esharpes</td>
<td></td>
</tr>
<tr>
<td>Esharpes crustatus</td>
<td></td>
</tr>
<tr>
<td>Eohomalonotus</td>
<td></td>
</tr>
<tr>
<td>Ziang in Lo & Dong, 1952</td>
<td></td>
</tr>
<tr>
<td>Eoedrerenia intermedia</td>
<td></td>
</tr>
<tr>
<td>Erbenoichile erbeni</td>
<td></td>
</tr>
<tr>
<td>Esmeraldina</td>
<td></td>
</tr>
<tr>
<td>Eustroops exilis</td>
<td></td>
</tr>
<tr>
<td>Endolites flavus</td>
<td></td>
</tr>
<tr>
<td>Guterba-Marco & Rasanb, 1987</td>
<td></td>
</tr>
<tr>
<td>Eurycare</td>
<td></td>
</tr>
<tr>
<td>Angelin, 1854</td>
<td></td>
</tr>
<tr>
<td>Fallotaspis</td>
<td></td>
</tr>
<tr>
<td>Hup, 1953</td>
<td></td>
</tr>
<tr>
<td>Fallotaspis cf. typica</td>
<td></td>
</tr>
<tr>
<td>Hup, 1953</td>
<td></td>
</tr>
<tr>
<td>Flexicalymene</td>
<td></td>
</tr>
<tr>
<td>Shirely, 1936</td>
<td></td>
</tr>
<tr>
<td>Flexicalymene granulosa</td>
<td></td>
</tr>
<tr>
<td>Forste, 1909</td>
<td></td>
</tr>
<tr>
<td>Flexicalymene meeki</td>
<td></td>
</tr>
<tr>
<td>Forste, 1910</td>
<td></td>
</tr>
<tr>
<td>Flexicalymene ouzregui</td>
<td></td>
</tr>
<tr>
<td>Destombes, 1966</td>
<td></td>
</tr>
<tr>
<td>Flexicalymene retrorsa</td>
<td></td>
</tr>
<tr>
<td>Forste, 1910</td>
<td></td>
</tr>
<tr>
<td>Flexicalymene senaria</td>
<td></td>
</tr>
<tr>
<td>Conrad, 1841</td>
<td></td>
</tr>
<tr>
<td>Foulonial</td>
<td></td>
</tr>
<tr>
<td>Prbyli & Vanik, 1985</td>
<td></td>
</tr>
<tr>
<td>Franconvicia bruntisi</td>
<td></td>
</tr>
<tr>
<td>Wolfart, 1968</td>
<td></td>
</tr>
<tr>
<td>Fritzaspis</td>
<td></td>
</tr>
<tr>
<td>Hollingsworth, 2007</td>
<td></td>
</tr>
<tr>
<td>Gabricarneus dentatus</td>
<td></td>
</tr>
<tr>
<td>Raymond & Barton, 1913</td>
<td></td>
</tr>
<tr>
<td>Gabrielius</td>
<td></td>
</tr>
<tr>
<td>Fritz, 1992</td>
<td></td>
</tr>
<tr>
<td>Geesops schlotheimi</td>
<td></td>
</tr>
<tr>
<td>Brons, 1825</td>
<td></td>
</tr>
<tr>
<td>Geesops sparsnodosus gallicus</td>
<td></td>
</tr>
<tr>
<td>Struze, 1982</td>
<td></td>
</tr>
<tr>
<td>Gemeloides delasernai</td>
<td></td>
</tr>
<tr>
<td>de Carnauloa, Edgecombe & Smith, 2003</td>
<td></td>
</tr>
<tr>
<td>Genevirella granulata</td>
<td></td>
</tr>
<tr>
<td>Hollingsworth, 1916</td>
<td></td>
</tr>
<tr>
<td>Geragnostus</td>
<td></td>
</tr>
<tr>
<td>Howell, 1935</td>
<td></td>
</tr>
<tr>
<td>Gerasaphes ulrichana</td>
<td></td>
</tr>
<tr>
<td>Clarke, 1894</td>
<td></td>
</tr>
<tr>
<td>Gerasostus</td>
<td></td>
</tr>
<tr>
<td>Goldfuss, 1843</td>
<td></td>
</tr>
<tr>
<td>Gerastost catervus</td>
<td></td>
</tr>
<tr>
<td>van Viersen, 2006</td>
<td></td>
</tr>
<tr>
<td>Gerastost cf. doernbergensis</td>
<td></td>
</tr>
<tr>
<td>Basse, 2002</td>
<td></td>
</tr>
<tr>
<td>Gerastost culturjatinga</td>
<td></td>
</tr>
<tr>
<td>Richter & Richter, 1918</td>
<td></td>
</tr>
<tr>
<td>Gerastost cuvieri</td>
<td></td>
</tr>
<tr>
<td>Steiningen, 1831</td>
<td></td>
</tr>
<tr>
<td>Gerastost granulosus</td>
<td></td>
</tr>
<tr>
<td>Goldfuss, 1843</td>
<td></td>
</tr>
<tr>
<td>Gerastost prujs leuensis</td>
<td></td>
</tr>
<tr>
<td>van Viersen & Pruemser, 2008</td>
<td></td>
</tr>
<tr>
<td>Gerastost tuberculatus marocensis</td>
<td></td>
</tr>
<tr>
<td>Chatterton, Fortey, Brett, Gibbs & McKellar, 2006</td>
<td></td>
</tr>
<tr>
<td>Germanocarneus gerry</td>
<td></td>
</tr>
<tr>
<td>Barrande, 1852</td>
<td></td>
</tr>
<tr>
<td>Gionellida meneghinii</td>
<td></td>
</tr>
<tr>
<td>Bornemann, 1883</td>
<td></td>
</tr>
<tr>
<td>Gionellida vincti</td>
<td></td>
</tr>
<tr>
<td>Pillola, 1991</td>
<td></td>
</tr>
<tr>
<td>Glossopleura</td>
<td></td>
</tr>
<tr>
<td>Poulken, 1927</td>
<td></td>
</tr>
<tr>
<td>Glossopleura bion</td>
<td></td>
</tr>
<tr>
<td>Wallcot, 1916</td>
<td></td>
</tr>
<tr>
<td>Glossopleura gigantea</td>
<td></td>
</tr>
<tr>
<td>Reisser, 1935</td>
<td></td>
</tr>
<tr>
<td>Glossopleura packi</td>
<td></td>
</tr>
<tr>
<td>Reisser, 1935</td>
<td></td>
</tr>
<tr>
<td>Goldius</td>
<td></td>
</tr>
<tr>
<td>de Koninck, 1841</td>
<td></td>
</tr>
<tr>
<td>Goldius goolaerti</td>
<td></td>
</tr>
<tr>
<td>van Viersen, 2007</td>
<td></td>
</tr>
<tr>
<td>Goldius grafi</td>
<td></td>
</tr>
<tr>
<td>Basse (in Basse & Muller, 2004)</td>
<td></td>
</tr>
<tr>
<td>Gondwanaspis</td>
<td></td>
</tr>
<tr>
<td>Fiest, 2002</td>
<td></td>
</tr>
<tr>
<td>Goniotelus</td>
<td></td>
</tr>
<tr>
<td>Ulrich, 1927</td>
<td></td>
</tr>
<tr>
<td>Grandimimus</td>
<td></td>
</tr>
<tr>
<td>Hollingsworth, 2006</td>
<td></td>
</tr>
<tr>
<td>Granolemas</td>
<td></td>
</tr>
<tr>
<td>Jago, 1980</td>
<td></td>
</tr>
<tr>
<td>Griffithidella doris</td>
<td></td>
</tr>
<tr>
<td>Hall, 1860</td>
<td></td>
</tr>
<tr>
<td>Griffithiides acanthiceps</td>
<td></td>
</tr>
<tr>
<td>Woodward, 1896</td>
<td></td>
</tr>
<tr>
<td>Grinnellaspis (Actinopeltis) globosus</td>
<td></td>
</tr>
<tr>
<td>Poulken, 1946</td>
<td></td>
</tr>
<tr>
<td>Gadralisitum lindsayense</td>
<td></td>
</tr>
<tr>
<td>Basse, 2003</td>
<td></td>
</tr>
<tr>
<td>Hamatolemus (Hamatolemus) marocamus</td>
<td></td>
</tr>
<tr>
<td>Nelten, 1938</td>
<td></td>
</tr>
<tr>
<td>Hamatolemus (Hamatolemus) vincenti</td>
<td></td>
</tr>
<tr>
<td>Geyer & LANDING, 2004</td>
<td></td>
</tr>
<tr>
<td>Hapalopleura</td>
<td></td>
</tr>
<tr>
<td>Harrington & Leanza, 1957</td>
<td></td>
</tr>
<tr>
<td>Harpae</td>
<td></td>
</tr>
<tr>
<td>Goldfuss, 1839</td>
<td></td>
</tr>
<tr>
<td>Harpes macrocephalus</td>
<td></td>
</tr>
<tr>
<td>Goldfuss, 1839</td>
<td></td>
</tr>
<tr>
<td>Harpides</td>
<td></td>
</tr>
<tr>
<td>Beyrich, 1846</td>
<td></td>
</tr>
<tr>
<td>Harpides piurini</td>
<td></td>
</tr>
<tr>
<td>Schimdt, 1894</td>
<td></td>
</tr>
<tr>
<td>Hebediscina saridosa</td>
<td></td>
</tr>
<tr>
<td>Rasse, 1972</td>
<td></td>
</tr>
<tr>
<td>Hedmanaspis canadensis</td>
<td></td>
</tr>
<tr>
<td>Chatterton & Leidevser, 1998</td>
<td></td>
</tr>
<tr>
<td>Elioponogites</td>
<td></td>
</tr>
<tr>
<td>Richter & Richter, 1919</td>
<td></td>
</tr>
<tr>
<td>Heliopyge helios</td>
<td></td>
</tr>
<tr>
<td>Richter & Richter, 1926</td>
<td></td>
</tr>
<tr>
<td>Heliopyge troaonensis</td>
<td></td>
</tr>
</tbody>
</table>
Hemisphaerides
Gerich, 1901
343
LIC Ord

Hemisphaxion amplifrons
Robison, 1964
260
COR Cam

Hibbertia brevigena
Hassmann & Léone, 1997
148
HAR Ord

Hollardops mesocristata
Le Maître, 1952
389
PHA Dev

Hoplostichas plautini
Schmidt, 1885
57, 67, 320
LIC Ord

Hoplostichas conicus
Nieszkowski, 1859
320
LIC Ord

Houxia
Walcott, 1916
193
ASA Cam

Houxia ‘vaccina’
Walcott, 1890
280
ASA Ord

Huemaxaspis
Priele & Vaněk, 1980
143
PHA Ord

Hundgioides bohemicus arniguersensis
Thiabou, 1955
308
ASA Ord

Huroniatonia
Campbell, 2003
38
PHA Dev

Huroniatonia huntonensis
Ulrich & Delo, 1940
179, 367
PHA Dev

Huroniatonia lingulifera
Ulrich & Delo, 1940
367
PHA Dev

Huroniatonia oklahomae
Richardson, 1949
366
PHA Dev

Hupediscus
Zhang in Li, Zhang, Qian, Zhiu, Lin, Zhou, Zhang & Yuan, 1974
26
AGN Cam

Hupetina antiqua
Sisak, 1987
25
PTY Cam

Hydrocephalus crenus
Barrois, 1852
166, 247
RED Cam

Hydrocephalus mandaki
Kordule, 1990
245
RED Cam

Hydrocephalus minor
Boeck, 1827
244, 247
RED Cam

Hyagnostus parvifrons
Lindsay, 1869
63, 162, 252
AGN Cam

Hyapsolithus
Whittington, 1952
194
ASA Ord

Hypticranotus striatulus
Walcott, 1875
107, 341
ASA Ord

Iglesia ichnusae
Rasettii, 1972
135, 136
RED Cam

Illaenopsis
Salter, 1866
98
ASA Ord

Illaenula struvei
Basile & Müller, 2000
426
PHA Dev

Illaenus
Dalmann, 1827
98
COR Ord

Illaenus creber
Hassmann, 1992
145
COR Ord

Illaenus dalmanni
Volhardt, 1863
321
COR Ord

Illaenus incisus
Jaunusson, 1957
105, 166, 321
COR Ord

Illaenus insignis
Hall, 1865
168, 307
SIT Ord

Illaenus sarsii
Jaunusson, 1954
168
COR Ord

Illaenus schmidtii
Nieszkowski, 1857
320
COR Ord

Illaenus taeniorhynchus
Kutter, 1854
320
COR Ord

Irvingella
Ulrich & Resser in Walcott, 1924
280
PTY Cam

Isabelinia glabrata
Salter, 1853
304, 311, 313
ASA Ord

Isoteloides flexa
Hentze, 1953
297
ASA Ord

Isotelus
Dekay, 1824
83, 118
ASA Ord

Isotelus brachycephalus
Forster, 1919
352
ASA Ord

Isotelus gigas
Dekay, 1824
10, 52, 68, 107, 335, 342, 344
ASA Ord

Isotelus inovensis
Owen, 1852
62
ASA Ord

Isotelus macfraezi
62, 343, 357
ASA Ord

Isotelus maximus
Locke, 1838
61, 352, 353
ASA Ord

Isotelus rex
Ruskin, Young, Elias & Dobrzanska, 2003
13
ASA Ord

Isotelus walcotti
Walcott, 1918
343
ASA Ord

Jakutes primigenius
Ivantsov, 2005
169
COR Cam

Jegorovaia
Li in Wang, 1964
190, 197
ASA Cam

Jenkinsonia varga
Robinson, 1971
256
PTY Cam

Jocinella
Snodirg, 1957
138, 139
PTY Cam

Jocinella convexa
Alvardo, Vezano, Kordula, Fazka & Pello, 2004
139
PTY Cam

Jocinella prantlii
Ruzicka, 1944
139
PTY Cam

Judomia
Lémontova, 1951
26
RED Cam

Kanohihiella
Son, 1935
170
COR Cam

Kathnauia capitulosa
Grant, 1966
132
PRO Pat

Kayserops
Delp, 1935
415, 424
PHA Dev

Kayserops daleidenis
Basse, 2003
423
PHA Dev

Kettneraspis
Prahl & Priele, 1949
171, 425
ODD Dev

Kettneraspis elliptica
Borrower, 1843
414
ODD Dev

Kettneraspis seiberi
Basse, 2004
426
ODD Dev

Kettneraspis williamsi
Whittington, 1956
57, 99, 369, 456
ODD Dev

Kingiaspidoids
Hupe, 1953
229
PTY Cam

Kingiaspidoids cf. anguligera
229
PTY Cam

Kingiaspidoids laetus
Geyer, 1990
225
PTY Cam

Kingiaspidoids marocana
Gegout, 1951
229
PTY Cam

Kjellafia
Kael, 1916
60
RED Cam

Kleptothulae rathmusseni
Buido, 1995
24
UNC Cam

Kochina vestita
Risser, 1939
62, 77, 239
PTY Cam

Kolihapeltis
Prahl & Priele, 1947
57, 186
COR Dev

Kolihapeltis rathbunae
Alberti, 1966
399
ODD Dev

Koneprusia
Prahl & Priele, 1949
57, 397, 428
ODD Dev

Koneprusia lokia
Ruckert & Klever, 2007
410
ODD Dev

Kootenia
Walcott, 1889
63, 169, 240, 254, 268, 452
COR Ord

Kootenia spencei
Risser, 1939
240, 458, 459
COR Ord

Koonyangia pastulosa
Lu, 1941
217
RED Cam

Labiosia
Palmer, 1955
281
ASA Cam

Labiosia westropi
Charpentier & Ludwigson, 1998
281
ASA Cam

Lachnostoma latuicepsum
Ross, 1951
62, 297
ASA Ord

Laethropus
Ramskold, 1991
367, 369
ODD Dev

Lautouchea (L.) cf. epicurha
Geyer, 1990
229
PTY Cam

Lehua
Barton, 1916
290
PHA Ord

Lehua corbachi
Vela, 2007
290
PHA Ord

Lehua ponti
Vela, 2007
57, 290
PHA Ord

Lehua velai
Cordbich, 2008
290
PHA Ord

Lehua vinculum
Barrande, 1872
290
PHA Ord

Lejoppyge
Hawle & Corda, 1847
98
AGN Cam

Index to named or illustrated trilobites
489
<table>
<thead>
<tr>
<th>Trilobite Name</th>
<th>Author and Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lembadella</td>
<td>Struve, 1978</td>
</tr>
<tr>
<td>Leningradites longispinus</td>
<td>Balashov, 1976</td>
</tr>
<tr>
<td>Leonaspis</td>
<td>Richter & Richter, 1917</td>
</tr>
<tr>
<td>Leonaspis deflexa</td>
<td>Lake, 1896</td>
</tr>
<tr>
<td>Leptoplaxas</td>
<td>Angelin, 1854</td>
</tr>
<tr>
<td>Lermontovia</td>
<td>Suvorova, 1956</td>
</tr>
<tr>
<td>Leviceuropus</td>
<td>Hessin, 1988</td>
</tr>
<tr>
<td>Lichas</td>
<td>Dalman, 1827</td>
</tr>
<tr>
<td>Lichas barcaei</td>
<td>Hammann & Léone, 2007</td>
</tr>
<tr>
<td>Lichas vinasaui</td>
<td>Hammann & Léone, 2007</td>
</tr>
<tr>
<td>Liobola</td>
<td>Richter & Richter, 1949</td>
</tr>
<tr>
<td>Liobola (Pantilobe) subaequalis stania</td>
<td>Hain, Hain & Müller, 2000</td>
</tr>
<tr>
<td>Liobola abducta</td>
<td>Hain, Hain & Müller, 2000</td>
</tr>
<tr>
<td>Liobola finitima</td>
<td>Hain, Hain & Müller, 2000</td>
</tr>
<tr>
<td>Liobola glabrodis</td>
<td>Richter & Richter, 1949</td>
</tr>
<tr>
<td>Liobola subaequalis</td>
<td>Holzapfel, 1889</td>
</tr>
<tr>
<td>Liobilina</td>
<td>Richter & Richter, 1951</td>
</tr>
<tr>
<td>Liobilina nebulosa</td>
<td>Richter & Richter, 1951</td>
</tr>
<tr>
<td>Lioleophs sublevatvs</td>
<td>Struve, 1970</td>
</tr>
<tr>
<td>Liolepoloeupera serventi</td>
<td>Thoral, 1948</td>
</tr>
<tr>
<td>Litanaspis repovicensis</td>
<td>Faska, Kordylev & Snadr, 1987</td>
</tr>
<tr>
<td>Livia</td>
<td>Dzik & Lenzion, 1988</td>
</tr>
<tr>
<td>Lloylobothus lillyi</td>
<td>Murchison, 1839</td>
</tr>
<tr>
<td>Loboccephalina emmrichi</td>
<td>Barrande, 1846</td>
</tr>
<tr>
<td>Lobopogge</td>
<td>Perby & Eren, 1952</td>
</tr>
<tr>
<td>Lochkollena deckeri</td>
<td>deild, 1935</td>
</tr>
<tr>
<td>Lochkollena misleda</td>
<td>Barrande, 1852</td>
</tr>
<tr>
<td>Loganellus</td>
<td>Devine, 1863</td>
</tr>
<tr>
<td>Lnochcephalos plena</td>
<td>99, 267</td>
</tr>
<tr>
<td>Lonchodusmas</td>
<td>Angelin, 1854</td>
</tr>
<tr>
<td>Lonchodusmas aff. penssatus</td>
<td>Dean, 1961</td>
</tr>
<tr>
<td>Maccrolebole</td>
<td>Richter & Richter, 1951</td>
</tr>
<tr>
<td>Maladiodella cf. colchemi</td>
<td>Shergold, Linan & Palacios, 1984</td>
</tr>
<tr>
<td>Malangia laevigata</td>
<td>Li, 1961</td>
</tr>
<tr>
<td>Malvinella buodeae</td>
<td>Lieberman, Edgecombe & Eldredge, 1991</td>
</tr>
<tr>
<td>Mansuyia</td>
<td>Sun, 1924</td>
</tr>
<tr>
<td>Maritimeline rara</td>
<td>Repina & Okulmea, 1969</td>
</tr>
<tr>
<td>Marcumia tipo</td>
<td>Walcott, 1916</td>
</tr>
<tr>
<td>Marrowlithus baveusi</td>
<td>Oehlert, 1895</td>
</tr>
<tr>
<td>Marysilla</td>
<td>Walcott, 1916</td>
</tr>
<tr>
<td>Marysilla</td>
<td>Walcott, 1916</td>
</tr>
<tr>
<td>Marysilla</td>
<td>Walcott, 1916</td>
</tr>
<tr>
<td>Maurotarion axitiosum</td>
<td>Campbell, 1977</td>
</tr>
<tr>
<td>Maurotarion legrundi</td>
<td>Adrian & Edgecombe, 1996</td>
</tr>
<tr>
<td>Meadowtornella tretonensis</td>
<td>Hall, 1847</td>
</tr>
<tr>
<td>Megalaspida</td>
<td>Korbvasniki, 1937</td>
</tr>
<tr>
<td>Megistaspidaella triangularis</td>
<td>Schmidt, 1906</td>
</tr>
<tr>
<td>Megistaspis nericurus</td>
<td>192, 322</td>
</tr>
<tr>
<td>Megistaspis (Ekeraspis) hammodi</td>
<td>Corbacho & Veia, 2010</td>
</tr>
<tr>
<td>Menonomia</td>
<td>Walcott, 1916</td>
</tr>
<tr>
<td>Menonomia semele</td>
<td>Walcott, 1916</td>
</tr>
<tr>
<td>Menoparia</td>
<td>Ross, 1951</td>
</tr>
<tr>
<td>Mecaxonias</td>
<td>Walcott, 1885</td>
</tr>
<tr>
<td>Metacanthina barrandeai</td>
<td>Oehlert, 1889</td>
</tr>
<tr>
<td>Metacanthina isosomumorvisis</td>
<td>Merzdaic, 2001</td>
</tr>
<tr>
<td>Metacryphaeus (Eldredgeia) venetus</td>
<td>Wolfart, 1968</td>
</tr>
<tr>
<td>Metacryphaeus giganteus</td>
<td>Ulrich, 1892</td>
</tr>
<tr>
<td>Metacryphaeus giganteus</td>
<td>Ulrich, 1892</td>
</tr>
<tr>
<td>Metacryphaeus giganteus</td>
<td>Ulrich, 1892</td>
</tr>
<tr>
<td>Metadoides armatus</td>
<td>Minegahina, 1881</td>
</tr>
<tr>
<td>Meteoraspis dit</td>
<td>92, 202, 268</td>
</tr>
<tr>
<td>Metoplichites cf. platyphous</td>
<td>Schmidt, 1907</td>
</tr>
<tr>
<td>Metoplichites huevneri</td>
<td>Eichwald, 1843</td>
</tr>
<tr>
<td>Mexicella</td>
<td>Lochman, 1948</td>
</tr>
<tr>
<td>Microagnostus cf. haudei</td>
<td>Shergold & Struve, 1984</td>
</tr>
<tr>
<td>Microparapia</td>
<td>Hulse & Corda, 1847</td>
</tr>
<tr>
<td>Microphilippia tetraperta</td>
<td>Ruggeri, 1959</td>
</tr>
<tr>
<td>Miraaspis</td>
<td>Richter & Richter, 1917</td>
</tr>
<tr>
<td>Mitshiaouia</td>
<td>Chen, Edgecombe & Ramkold, 1997</td>
</tr>
<tr>
<td>Mitshiaouia longicaudata</td>
<td>Zhang & Hou, 1985</td>
</tr>
<tr>
<td>Modocia</td>
<td>Walcott, 1924</td>
</tr>
<tr>
<td>Modocia brevispinia</td>
<td>Robinon, 1964</td>
</tr>
<tr>
<td>Modocia laevequina</td>
<td>Robinon, 1964</td>
</tr>
<tr>
<td>Modocia typicalis</td>
<td>Reisser, 1938</td>
</tr>
<tr>
<td>Monocaraspis</td>
<td>Hollingsworth, 2006</td>
</tr>
<tr>
<td>Morgatia cf. primitiva</td>
<td>Hammann, 1972</td>
</tr>
<tr>
<td>Morgatia hujpea</td>
<td>Nien & Henri, 1967</td>
</tr>
<tr>
<td>Morroconites molladoideos</td>
<td>Struve, 1989</td>
</tr>
<tr>
<td>Morocops stravei</td>
<td>Schraut, 2000</td>
</tr>
<tr>
<td>Moraxinaeia cattia</td>
<td>Merzdaic, 2001</td>
</tr>
<tr>
<td>Mucronsaspis mertonata mertonata</td>
<td>Bronnigart, 1822</td>
</tr>
<tr>
<td>Mygnotholenia houtouitai</td>
<td>Geyer & Landuno, 2004</td>
</tr>
<tr>
<td>Namuroypge</td>
<td>Richter & Richter, 1939</td>
</tr>
<tr>
<td>Nanaorina</td>
<td>Walcott, 1912</td>
</tr>
<tr>
<td>Nanaorina bertiensis</td>
<td>Caron, Ruskin & Milliken, 2004</td>
</tr>
<tr>
<td>Nanaorina compacta</td>
<td>Walcott, 1912</td>
</tr>
</tbody>
</table>

Index to named or illustrated trilobites
<table>
<thead>
<tr>
<th>Name</th>
<th>Author and Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naraoia spinifera</td>
<td>Walcott, 1931</td>
</tr>
<tr>
<td>Naraoia spinosa</td>
<td>Zhang & Hou, 1985</td>
</tr>
<tr>
<td>Nebidella limbata</td>
<td>Rasetti, 1972</td>
</tr>
<tr>
<td>Neocobboidia</td>
<td>Zhang & Clarke, 1990</td>
</tr>
<tr>
<td>Neometacanthus</td>
<td>Richter & Richter, 1948</td>
</tr>
<tr>
<td>Neometacanthus stellifer</td>
<td>Burmeister, 1843</td>
</tr>
<tr>
<td>Neopentometus verrucosus</td>
<td>Gemmellaro, 1892</td>
</tr>
<tr>
<td>Neseuretus turricus</td>
<td>Dean, 1967</td>
</tr>
<tr>
<td>Neseuretus (Neseuretus) tristani tardus</td>
<td>Hammann, 1983</td>
</tr>
<tr>
<td>Neseuretus avus</td>
<td>Hammann, 1977</td>
</tr>
<tr>
<td>Neseuretus tristani</td>
<td>Bromsart, 1822</td>
</tr>
<tr>
<td>Nevadaia</td>
<td>Walcott, 1910</td>
</tr>
<tr>
<td>Nevadaia weeksi</td>
<td>Walcott, 1910</td>
</tr>
<tr>
<td>Nileus</td>
<td>Dalman, 1827</td>
</tr>
<tr>
<td>Nileus armadillo</td>
<td>Dalman, 1827</td>
</tr>
<tr>
<td>Niobe schmidtii</td>
<td>Balashova, 1976</td>
</tr>
<tr>
<td>Niobella</td>
<td>Reed, 1931</td>
</tr>
<tr>
<td>Niobella cf. primaeva</td>
<td>Westergaard, 1909</td>
</tr>
<tr>
<td>Niobella lindstroemi</td>
<td>Schmidt, 1901</td>
</tr>
<tr>
<td>Nobiliasaphus</td>
<td>Privöl & Vaske, 1965</td>
</tr>
<tr>
<td>Nobiliasaphus dellesci</td>
<td>Deuff, 1875</td>
</tr>
<tr>
<td>Nobiliasaphus nobilis</td>
<td>Barrande, 1846</td>
</tr>
<tr>
<td>Norwoodia</td>
<td>Walcott, 1916</td>
</tr>
<tr>
<td>Novakella</td>
<td>Whitting, 1961</td>
</tr>
<tr>
<td>Nunnumaspis stitti</td>
<td>Brejnik, 2000</td>
</tr>
<tr>
<td>Nycterops foliandi</td>
<td>Van Viersen, 2007</td>
</tr>
<tr>
<td>Nycterops nytr</td>
<td>Struve, 1970</td>
</tr>
<tr>
<td>Odontocephala</td>
<td>Eimmrich, 1839</td>
</tr>
<tr>
<td>Ogygiocaris</td>
<td>Angelin, 1854</td>
</tr>
<tr>
<td>Ogyginus</td>
<td>Raymond, 1912</td>
</tr>
<tr>
<td>Ogyginus armoricanus</td>
<td>Tromelin & Lebesconte, 1876</td>
</tr>
<tr>
<td>Ogyginus corrodensis corrodensis</td>
<td>Murchison, 1839</td>
</tr>
<tr>
<td>Ogyginus fortoy</td>
<td>Rabano, 1889</td>
</tr>
<tr>
<td>Ogyginus fortoy hammondi</td>
<td>Corbacho & Vela, 2010</td>
</tr>
<tr>
<td>Ogygiocarci</td>
<td>Angelin, 1854</td>
</tr>
<tr>
<td>Ogygopsis typicalis</td>
<td>Reisler, 1939</td>
</tr>
<tr>
<td>Okelemus cf. eurydice</td>
<td>Basse, 1998</td>
</tr>
<tr>
<td>Onnochoe</td>
<td>Thomas & Holloway, 1988</td>
</tr>
<tr>
<td>Olekmaspis</td>
<td>Novorohina, 1956</td>
</tr>
<tr>
<td>Olenelus cf. transitans</td>
<td>Walcott, 1910</td>
</tr>
<tr>
<td>Olenelus clarki</td>
<td>Reisler, 1928</td>
</tr>
<tr>
<td>Olenelus fremonti</td>
<td>Walcott, 1910</td>
</tr>
<tr>
<td>Olenelus giberti</td>
<td>Meek in White, 1874</td>
</tr>
<tr>
<td>Olenelus nevadensis</td>
<td>Walcott, 1910</td>
</tr>
<tr>
<td>Olenelus schucherti</td>
<td>Reisler & Howell, 1938</td>
</tr>
<tr>
<td>Olenelus terminatus</td>
<td>Palmer, 1998</td>
</tr>
<tr>
<td>Olenoides</td>
<td>Meek, 1877</td>
</tr>
<tr>
<td>Olenoides infaustus</td>
<td>Walcott, 1870</td>
</tr>
<tr>
<td>Olenoides nevadensis</td>
<td>Meek, 1870</td>
</tr>
<tr>
<td>Olenoides parapactus</td>
<td>Zima, Ahlberg & Yuan, 1994</td>
</tr>
<tr>
<td>Olenoides pugio</td>
<td>Walcott, 1908</td>
</tr>
<tr>
<td>Olenoides serratus</td>
<td>Rössing, 1887</td>
</tr>
<tr>
<td>Olenoides superbus</td>
<td>Rasetti, 1946</td>
</tr>
<tr>
<td>Olenus</td>
<td>Dalman, 1827</td>
</tr>
<tr>
<td>Olenus truncatus</td>
<td>Brunni, 1781</td>
</tr>
<tr>
<td>Olenus wahrenbergi</td>
<td>Westergaard, 1922</td>
</tr>
<tr>
<td>Ochonotellus</td>
<td>Lernstaodra, 1951</td>
</tr>
<tr>
<td>Omania</td>
<td>Bancroft, 1929</td>
</tr>
<tr>
<td>Oppipeuter</td>
<td>Forney, 1974</td>
</tr>
<tr>
<td>Oppidiscus</td>
<td>Westergaard, 1949</td>
</tr>
<tr>
<td>Ornamentaspis usitata</td>
<td>Grever, 1990</td>
</tr>
<tr>
<td>Oryctoccephalus</td>
<td>Walcott, 1886</td>
</tr>
<tr>
<td>Oryctoccephalus indicus</td>
<td>Reis, 1910</td>
</tr>
<tr>
<td>Orygmaskis</td>
<td>Reisler, 1937</td>
</tr>
<tr>
<td>Orygmaspis</td>
<td>Frederiksen, 1949</td>
</tr>
<tr>
<td>Otarion</td>
<td>Zenker, 1833</td>
</tr>
<tr>
<td>Otarion oceanicum</td>
<td>Morazlich, 1983</td>
</tr>
<tr>
<td>Otarionella</td>
<td>Weyer, 1965</td>
</tr>
<tr>
<td>Paciphacops</td>
<td>Massimova, 1972</td>
</tr>
<tr>
<td>Paciphacops campbellii</td>
<td>Ramsköld & Werdelin, 1991</td>
</tr>
<tr>
<td>Paciphacops orarensis</td>
<td>Bonarelli, 1921</td>
</tr>
<tr>
<td>Pagetia</td>
<td>Walcott, 1916</td>
</tr>
<tr>
<td>Pagetia cf. P. significans</td>
<td>Etheridge, 1902</td>
</tr>
<tr>
<td>Pagetia</td>
<td>Walcott, 1905</td>
</tr>
<tr>
<td>Palmettaspis</td>
<td>Fritz, 1995</td>
</tr>
<tr>
<td>Pandaspinapyga</td>
<td>Esker & Levin, 1964</td>
</tr>
<tr>
<td>Pandera</td>
<td>Volhorth, 1863</td>
</tr>
<tr>
<td>Panderia triquetra</td>
<td>Volhorth, 1863</td>
</tr>
<tr>
<td>Parabourauria</td>
<td>Prantl & Pehr, 1949</td>
</tr>
<tr>
<td>Parabourauria cf. crassa</td>
<td>Barrande, 1872</td>
</tr>
<tr>
<td>Parahladwelderia lauensis</td>
<td>Peng, Yang & Hughes, 2008</td>
</tr>
<tr>
<td>Paraholina</td>
<td>Salter, 1849</td>
</tr>
<tr>
<td>Paraholinella</td>
<td>Breugger, 1882</td>
</tr>
<tr>
<td>Paraholinella bolbifrons</td>
<td>Forney & Owens, 1997</td>
</tr>
</tbody>
</table>

Index to named or illustrated trilobites

491
Paracurauites exudal
YANG in ZHOU ET AL., 1977
174 Cam
LIC

Paradoxides
BRONGNIART, 1922
80, 138
RED Cam

Paradoxides (Acadoparadoxides) murrensensis
SIZYK, 1958
139 RED Cam

Paradoxides (Ecceparadoxides) bruchy Rachis
LINNARIUS, 1883
139 RED Cam

Paradoxides (Ecceparadoxides) mediterraneus
POMPECKI, 1901
138, 140 RED Cam

Paradoxides graciosus
BOECK, 1827
107, 166, 247, 248 RED Cam

Parafallotaspis
FRITZ, 1972
26 RED Cam

Paralejurus
HAWLE & CORDA, 1847
390
PHA Dev

Paralejurus hamlagadacicus
ALBERTI, 1983
44, 70, 390
PHA Dev

Paramorphoellus cf. besti
WEBSTER, 2007
222 RED Cam

Paramoellus
PALMER & RIPA, 1993
26 RED Cam

Paraphyllidae carpiniski
TOUMANSKY, 1935
182
PRO Per

Paraphyllidae milleri
DIESEL, 1847
132 PRO Per

Paraphyllidae
KOBAYASHI, 1934
290
PHA Ord

Parasolenopleura
POLETAeva IN EGOrova, LOMovTSAKova, POLETAeva & SoYov, 1955
230
PTY Cam

Parasolenopleura cf. maldadiensis
GEYER, 1998
230
PHA Dev

Parasolenopleura
LEU IN ZHOU ET AL., 1977
170
PTY Cam

Paradatysia hispida
THORL, 1935
138
PTY Cam

Peacchella idaingi
WALOFT, 1884
222, 224
RED Cam

Pedonapariops
STRAUFE, 1972
425, 427
PHA Dev

Pedonapariops brunniartii
STEININGER, 1831
46, 411, 412
PHA Dev

Pelitaura
MISHI-EDWARDS, 1840
109
PTY Cam

Pennaia penneyi
D'OBREGON, 1847
381
PHA Dev

Pernaproetus postcarbonarius
GEDMELLARO, 1890
156
AGN Cam

Pernopsis
HAWLE & CORDA, 1847
138, 258
AGN Cam

Pernopsis falax
LINNARIUS, 1869
139
AGN Cam

Pernopsis integra
BEYREICH, 1845
162, 252
AGN Cam

Pernopsis intersticula
WHITE, 1874
162, 253, 254, 256
AGN Cam

Petigurus
RAYMOND, 1913
51
PRO Ord

Petigurus
TROMBLAN, 1877
310, 311
PHA Ord

Phacops imitator
STREUFE, 1970
46, 411, 412, 419
PHA Dev

Phacops laetifrons
BRON, 1825
46, 428
PHA Dev

Phacops sabrensis torskensis
SCHRAUw, 2000
395
PHA Dev

Phaetonellus
NOVA, 1890
186, 390
PRO Dev

Phaetonellus planicauda
BARRANDE, 1868
396
PRO Dev

Phalagynostus nudus
BEYREICH, 1845
252
AGN Cam

Phillipsia
PORTLOCK, 1843
131, 186
PRO Car

Phillipsia oehleri
GEDMELLARO, 1892
156
PRO Per

Phillipsia pulchella
GEDMELLARO, 1892
156
PRO Per

Phillipsia sienensis
GEDMELLARO, 1892
156
PRO Per

Pithonella carlakertisae
BREZINSKI, 2000
438
PRO Car

Pithonella kuehnei
GOLDMIND, 1935
434
PRO Ord

Placoparia
HAWLE & CORDA, 1847
30, 181, 346
PHA Ord

Placoparia (Coplacoparia) tournemini
ROULX, 1847
311, 313
PHA Ord

Placoparia (Coplacoparia) tournemini
HICK, 1875
308
PHA Ord

Placoparia tournemini
ROULX, 1847
305
PHA Ord

Platiscutellum cf. massai
ALBERTI, 1981
400
COR Dev

Pleistomalavina borei
KOLZOWSKY, 1992
382
PHA Dev

Pleuroceratium
HAWLE & CORDA, 1847
161
AGN Cam

Pliomerops
EICHHARDT, 1825
324
PHA Ord

Pliomerops
RAYMOND, 1905
181
PHA Ord

Polypleuraspis
POLECKI, 1827
169
COR Cam

Porterfieldia
COOPER, 1953
109
PTY Ord

Presbylineus ibexensis
HINTZE, 1954
297
ASA Ord

Priscylycophe
RICHIER & RICHER, 1954
66, 101
ASA Ord

Priscylycophe longicepsala
KLOOKEK, 1916
66, 195
ASA Ord

Primagna crosstus
LACK, 1843
530
ODO Ord

Prionocelius
ROULX, 1847
143, 176, 311
PHA Ord

Prionocelius inermis
KOBOLOVA IN SOKOLOV & YOLINSKY, 1978
145, 148, 150
PHA Ord

Prionocelius mendax
VANER, 1665
308
PHA Ord

Proceratopoge
WALLERUS, 1895
114, 139
ASA Cam

Proceratopoge reticulata
TROESCHIN, 1937
283
ASA Cam

Prochunagia
KOBAYASHI, 1935
139
COR Cam

Proetus
STEININGER, 1831
147, 340
PRO Ord

Proetus granulatus
LINDSTRON, 1885
560, 361
PRO Sil

Proetus postcarbonarius
GEDMELLARO, 1892
155
PRO Per

Protalbotaspis
REPEINA IN KROMENTOVSKY & REPEINA, 1965
26
RED Cam

Protalbotaspis jakutenensis
KROMENTOVSKY & REPEINA, 1965
25
RED Cam

Prolosole pedalare
HABIN & MANN & MILLER, 1998
153
PRO Car

Protolejurus
BARRANDE, 1868
139
PTY Ord

Protolenus (Protolejurus) pavidus
DEAN & OZOLSKY, 1994
138
PTY Cam

Protolenus (Protolejurus) cf. demigranulatus
GEYER, 1990
229
PTY Cam

Protopenydeus
HINTZE, 1954
297
ASA Ord

Pseudosapropilus tecticadustus
STEINHARDT, 1874
325
ASA Ord

Pseudosedascanthus laeversi
SCHMIDT, 1898
325
ASA Ord

Pseudocybele
ROECK, 1951
105, 297
PHA Ord

Pseudocybele altinacuta
HINTZE, 1952
63, 298, 299
PHA Ord

Pseudocybele tenuis
HINTZE, 1952
299
PHA Ord

Pseudocybele tuscanus
ROSE, 1951
61
PHA Ord

Pseudocybele tuscanus
KOBAYASHI, 1934
91
ASA Ord

Pseudokainella
HARRINGTON, 1938
194
ASA Cam

Pseudomalvaspinus patagiata
TOREMQUIST, 1884
192
ASA Ord

Pseudonaraoia hammanii
BUDIL, FATKA, BRUHANSKVA, 2003
18
NEK Ord
<table>
<thead>
<tr>
<th>Trilobite Name</th>
<th>Author, Year</th>
<th>Publication Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudophillipsia anshanensis</td>
<td>Qian et al., 1977</td>
<td>1982</td>
</tr>
<tr>
<td>Pseudophillipsia elegans</td>
<td>Qian et al., 1977</td>
<td>1982</td>
</tr>
<tr>
<td>Pseudophillipsia gemmellarois</td>
<td>Greco, 1935</td>
<td>1935</td>
</tr>
<tr>
<td>Pseudophillipsia obtusicauda</td>
<td>Kuyper, 1983</td>
<td>1983</td>
</tr>
<tr>
<td>Pseudophillipsia sumatrensis</td>
<td>Roemer, 1880</td>
<td>1880</td>
</tr>
<tr>
<td>Pseudophoracoschus puberschi</td>
<td>Schmidt, 1881</td>
<td>1881</td>
</tr>
<tr>
<td>Pseudoveleiroa (Dushania) keisingi</td>
<td>Haas & Brauckmann, 1988</td>
<td>1988</td>
</tr>
<tr>
<td>Pseudoveleiroa (Geigiolus) insitista</td>
<td>Haas & Bruckmann, 2000</td>
<td>2000</td>
</tr>
<tr>
<td>Pseudoveleiroa (Geigiolus) thomasi</td>
<td>Tersher & Tersher, 1950</td>
<td>1950</td>
</tr>
<tr>
<td>Psychopygy eucubans</td>
<td>Morzadec, 2001</td>
<td>2001</td>
</tr>
<tr>
<td>Psychopygy praceutus</td>
<td>Heepler, 1963</td>
<td>1963</td>
</tr>
<tr>
<td>Quadrops</td>
<td>Morzadec, 2001</td>
<td>2001</td>
</tr>
<tr>
<td>Quadrops flexuosa</td>
<td>Morzadec, 2001</td>
<td>2001</td>
</tr>
<tr>
<td>Radiaspis</td>
<td>Richter & Richter, 1917</td>
<td>1917</td>
</tr>
<tr>
<td>Radiaspis cornes</td>
<td>Basie, 1998</td>
<td>1998</td>
</tr>
<tr>
<td>Radiaspis simplex</td>
<td>Kolorova in Sokolov & Yulkin, 1978</td>
<td>1978</td>
</tr>
<tr>
<td>Raphocephorid</td>
<td>Angelin, 1854</td>
<td>1854</td>
</tr>
<tr>
<td>Raymondites</td>
<td>Sinclair, 1944</td>
<td>1944</td>
</tr>
<tr>
<td>Redlicchia</td>
<td>Consinna, 1902</td>
<td>1902</td>
</tr>
<tr>
<td>Redlicchia taksoensis</td>
<td>Lu, 1950</td>
<td>1950</td>
</tr>
<tr>
<td>Reddops bronni</td>
<td>Barrande, 1849</td>
<td>1849</td>
</tr>
<tr>
<td>Reddops cephalotes hamlagdadus</td>
<td>Albert, 1983</td>
<td>1983</td>
</tr>
<tr>
<td>Reddops maurulius</td>
<td>Albert, 1970</td>
<td>1970</td>
</tr>
<tr>
<td>Rejocephalus kruzeki</td>
<td>Kordule, 1990</td>
<td>1990</td>
</tr>
<tr>
<td>Rejocephalus russandus</td>
<td>Barrande, 1846</td>
<td>1846</td>
</tr>
<tr>
<td>Remopleuridus</td>
<td>Portlock, 1843</td>
<td>1843</td>
</tr>
<tr>
<td>Remopleuridus nanus</td>
<td>Leichtenberg, 1843</td>
<td>1843</td>
</tr>
<tr>
<td>Reginella</td>
<td>Geyer, 1996</td>
<td>1996</td>
</tr>
<tr>
<td>Resserops</td>
<td>Richter & Richter, 1940</td>
<td>1940</td>
</tr>
<tr>
<td>Retamaspid melendezii</td>
<td>Hamann, 1972</td>
<td>1972</td>
</tr>
<tr>
<td>Rhenops</td>
<td>Richter & Richter, 1943</td>
<td>1943</td>
</tr>
<tr>
<td>Rhenops ex. anserinensis</td>
<td>Richter, 1916</td>
<td>1916</td>
</tr>
<tr>
<td>Sabarops bensaidi</td>
<td>Morzadec, 2001</td>
<td>2001</td>
</tr>
<tr>
<td>Saltaspis</td>
<td>Harrington & Leanza, 1952</td>
<td>1952</td>
</tr>
<tr>
<td>Saltascorophy</td>
<td>Hamann, 1977</td>
<td>1977</td>
</tr>
<tr>
<td>Saltascoryphopteris salteri</td>
<td>Rognell, 1851</td>
<td>1851</td>
</tr>
<tr>
<td>Sao hirsuta</td>
<td>Barrande, 1846</td>
<td>1846</td>
</tr>
<tr>
<td>Sardaspis laticeps</td>
<td>Bornemann, 1881</td>
<td>1881</td>
</tr>
<tr>
<td>Sardasps papillosa</td>
<td>Brasier, 1976</td>
<td>1976</td>
</tr>
<tr>
<td>Sardolet spilloi</td>
<td>Hamann & Leane, 2007</td>
<td>2007</td>
</tr>
<tr>
<td>Sardorelicidia arenivaga</td>
<td>Meneglini, 1888</td>
<td>1888</td>
</tr>
<tr>
<td>Sardorelicidia carinata</td>
<td>Rasetti, 1972</td>
<td>1972</td>
</tr>
<tr>
<td>Sardorelicidia frabouleti</td>
<td>Pleska, 1991</td>
<td>1991</td>
</tr>
<tr>
<td>Sarrhaxas teichmaelneri</td>
<td>Hamann & Leane, 1977</td>
<td>1977</td>
</tr>
<tr>
<td>Sankia</td>
<td>Walcott, 1914</td>
<td>1914</td>
</tr>
<tr>
<td>Scabrisculaeum</td>
<td>Richter & Richter, 1956</td>
<td>1956</td>
</tr>
<tr>
<td>Schizostylus brevicaudatus</td>
<td>Kozlowski, 1923</td>
<td>1923</td>
</tr>
<tr>
<td>Schmalesasia fusilis</td>
<td>Peng & Barlow & Lin, 2004</td>
<td>2004</td>
</tr>
<tr>
<td>Scatellum</td>
<td>Power, 1833</td>
<td>1833</td>
</tr>
<tr>
<td>Scatellum geeseense</td>
<td>Richter & Richter, 1956</td>
<td>1956</td>
</tr>
<tr>
<td>Scatellum al. pustulateum</td>
<td>Archinal, 1994</td>
<td>1994</td>
</tr>
<tr>
<td>Selencenebasicum</td>
<td>Clark, 1924</td>
<td>1924</td>
</tr>
<tr>
<td>Selencenebasicum platyura (nomen nundum)</td>
<td>Beine, 1990</td>
<td>1990</td>
</tr>
<tr>
<td>Selenopelis</td>
<td>Hawle & Cordia, 1847</td>
<td>1847</td>
</tr>
<tr>
<td>Selenopelis aff. kamilla</td>
<td>Snaed, 1984</td>
<td>1984</td>
</tr>
<tr>
<td>Selenopelis buchi</td>
<td>Barrande, 1846</td>
<td>1846</td>
</tr>
<tr>
<td>Selenopelis gallica</td>
<td>Bruton, 1978</td>
<td>1978</td>
</tr>
<tr>
<td>Selenopelis inermis becheri</td>
<td>Hawle & Cordia, 1847</td>
<td>1847</td>
</tr>
<tr>
<td>Selenopelis longispinus</td>
<td>Vela & Corracho, 2009</td>
<td>2009</td>
</tr>
<tr>
<td>Selenopelis macrophalma</td>
<td>Klock, 1916</td>
<td>1916</td>
</tr>
<tr>
<td>Serrenia</td>
<td>Linan, 1978</td>
<td>1978</td>
</tr>
<tr>
<td>Serrenia gourdensis</td>
<td>Linan, 1978</td>
<td>1978</td>
</tr>
<tr>
<td>Shumarodella</td>
<td>Peck & van Eek, 1989</td>
<td>1989</td>
</tr>
<tr>
<td>Shumarodella (Conophyrs) salopiensis</td>
<td>Callaway, 1877</td>
<td>1877</td>
</tr>
<tr>
<td>Simodiscus</td>
<td>Zhang et al., 1984</td>
<td>1984</td>
</tr>
<tr>
<td>Skreiaspis brunensis</td>
<td>Courtisole, 1973</td>
<td>1973</td>
</tr>
<tr>
<td>Solenopelops (Manubahia) riberi</td>
<td>De Verneuil & Barrande, 1860</td>
<td>1860</td>
</tr>
<tr>
<td>Solenopelops (Manubahia) thorali</td>
<td>Sidco, 1958</td>
<td>1958</td>
</tr>
<tr>
<td>Soomaspis</td>
<td>Ferray & Thierot, 1995</td>
<td>1995</td>
</tr>
</tbody>
</table>

Index to named or illustrated trilobites
<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
<th>Sil/Ord/Dev</th>
<th>Cam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spasmatoclyme nasuta</td>
<td>176</td>
<td>PHA</td>
<td>Sil</td>
</tr>
<tr>
<td>Spencia</td>
<td>176</td>
<td>PTY</td>
<td>Cam</td>
</tr>
<tr>
<td>Spencia typicalis</td>
<td>176</td>
<td>PTY</td>
<td>Cam</td>
</tr>
<tr>
<td>Sphaeragnostus</td>
<td>176</td>
<td>AGN</td>
<td>Ord</td>
</tr>
<tr>
<td>Sphaerocephalina</td>
<td>176</td>
<td>PHA</td>
<td>Sil</td>
</tr>
<tr>
<td>Sphaerophthalma str普通</td>
<td>176</td>
<td>PTY</td>
<td>Cam</td>
</tr>
<tr>
<td>Sphaerophthalma alatus</td>
<td>176</td>
<td>PTY</td>
<td>Cam</td>
</tr>
<tr>
<td>Spinibole (Coombwoodia) coddomensis</td>
<td>176</td>
<td>PRO</td>
<td>Car</td>
</tr>
<tr>
<td>Staurocephalus clavifrons</td>
<td>176</td>
<td>PHA</td>
<td>Sil</td>
</tr>
<tr>
<td>Stemnites ponins</td>
<td>176</td>
<td>PTY</td>
<td>Cam</td>
</tr>
<tr>
<td>Svalbitides</td>
<td>176</td>
<td>PTY</td>
<td>Ord</td>
</tr>
<tr>
<td>Symphysops</td>
<td>176</td>
<td>ASA</td>
<td>Ord</td>
</tr>
<tr>
<td>Symphysops armata</td>
<td>176</td>
<td>ASA</td>
<td>Ord</td>
</tr>
<tr>
<td>Szczecinella</td>
<td>176</td>
<td>COR</td>
<td>Ord</td>
</tr>
<tr>
<td>Talakousitai</td>
<td>176</td>
<td>PTY</td>
<td>Cam</td>
</tr>
<tr>
<td>Taithungshania</td>
<td>176</td>
<td>ASA</td>
<td>Ord</td>
</tr>
<tr>
<td>Taklamakania</td>
<td>176</td>
<td>ASA</td>
<td>Ord</td>
</tr>
<tr>
<td>Taklamakania europaea</td>
<td>176</td>
<td>ASA</td>
<td>Ord</td>
</tr>
<tr>
<td>Tariccia</td>
<td>176</td>
<td>NEK</td>
<td>Ord</td>
</tr>
<tr>
<td>Tariccia arravensis</td>
<td>176</td>
<td>NEK</td>
<td>Ord</td>
</tr>
<tr>
<td>Telephina</td>
<td>176</td>
<td>PRO</td>
<td>Ord</td>
</tr>
<tr>
<td>Thalaeops lauterianata</td>
<td>176</td>
<td>COR</td>
<td>Ord</td>
</tr>
<tr>
<td>Thopigrhales</td>
<td>176</td>
<td>PRO</td>
<td>Car</td>
</tr>
<tr>
<td>Thyrsanopelis</td>
<td>176</td>
<td>COR</td>
<td>Dev</td>
</tr>
<tr>
<td>Thyrsanopyle</td>
<td>176</td>
<td>ASA</td>
<td>Ord</td>
</tr>
<tr>
<td>Tretaspis lattimba</td>
<td>176</td>
<td>ASA</td>
<td>Ord</td>
</tr>
<tr>
<td>Treverspyge</td>
<td>176</td>
<td>PHA</td>
<td>Dev</td>
</tr>
<tr>
<td>Triadaspis bigeneris</td>
<td>176</td>
<td>AGN</td>
<td>Cam</td>
</tr>
<tr>
<td>Triangulaspis</td>
<td>176</td>
<td>PTY</td>
<td>Cam</td>
</tr>
<tr>
<td>Triarthrus</td>
<td>176</td>
<td>PTY</td>
<td>Ord</td>
</tr>
<tr>
<td>Triarthrus eatoni</td>
<td>176</td>
<td>PTY</td>
<td>Ord</td>
</tr>
<tr>
<td>Triarthrus spinosus</td>
<td>176</td>
<td>PTY</td>
<td>Ord</td>
</tr>
<tr>
<td>Trypereophalus</td>
<td>176</td>
<td>PTY</td>
<td>Cam</td>
</tr>
<tr>
<td>Trypereophalus texamus</td>
<td>176</td>
<td>PTY</td>
<td>Cam</td>
</tr>
<tr>
<td>Trimeroprojectus</td>
<td>176</td>
<td>PHA</td>
<td>Dev</td>
</tr>
<tr>
<td>Trimeroccus mammiferous</td>
<td>176</td>
<td>PHA</td>
<td>Sil</td>
</tr>
<tr>
<td>Trimerurus</td>
<td>176</td>
<td>PHA</td>
<td>Sil</td>
</tr>
<tr>
<td>Trimerurus delphinocephalus</td>
<td>176</td>
<td>PHA</td>
<td>Sil</td>
</tr>
<tr>
<td>Trinucleus</td>
<td>176</td>
<td>ASA</td>
<td>Ord</td>
</tr>
<tr>
<td>Tropidocoryne</td>
<td>176</td>
<td>PRO</td>
<td>Dev</td>
</tr>
<tr>
<td>Tropidocoryne basseti</td>
<td>176</td>
<td>PRO</td>
<td>Dev</td>
</tr>
<tr>
<td>Utriataxius</td>
<td>176</td>
<td>AGN</td>
<td>Cam</td>
</tr>
<tr>
<td>Uktaspis</td>
<td>176</td>
<td>COR</td>
<td>Cam</td>
</tr>
<tr>
<td>Ullagetta angeli</td>
<td>176</td>
<td>COR</td>
<td>Ord</td>
</tr>
<tr>
<td>Ullagetta mediterranea</td>
<td>176</td>
<td>COR</td>
<td>Ord</td>
</tr>
<tr>
<td>Uralichas cf. hispanicus</td>
<td>176</td>
<td>LIC</td>
<td>Ord</td>
</tr>
<tr>
<td>Uralichas hispanicus tardus</td>
<td>176</td>
<td>LIC</td>
<td>Ord</td>
</tr>
<tr>
<td>Uralichas ribetorl</td>
<td>176</td>
<td>LIC</td>
<td>Ord</td>
</tr>
<tr>
<td>Urostrum</td>
<td>176</td>
<td>PRO</td>
<td>Ord</td>
</tr>
<tr>
<td>Utaspis marjumensis</td>
<td>176</td>
<td>PTY</td>
<td>Cam</td>
</tr>
<tr>
<td>Vaghaecops</td>
<td>176</td>
<td>PHA</td>
<td>Dev</td>
</tr>
<tr>
<td>Vaghaecops kozlowkii</td>
<td>176</td>
<td>PHA</td>
<td>Dev</td>
</tr>
<tr>
<td>Vaghaecops sp.</td>
<td>176</td>
<td>PHA</td>
<td>Dev</td>
</tr>
<tr>
<td>Vaghasina aspera</td>
<td>176</td>
<td>PHA</td>
<td>Dev</td>
</tr>
<tr>
<td>Vaghasina lacunosa</td>
<td>176</td>
<td>PHA</td>
<td>Dev</td>
</tr>
<tr>
<td>Walliseros</td>
<td>176</td>
<td>PHA</td>
<td>Dev</td>
</tr>
<tr>
<td>Walliseros hamnai</td>
<td>176</td>
<td>PHA</td>
<td>Dev</td>
</tr>
<tr>
<td>Walliseros trifurcatus</td>
<td>176</td>
<td>PHA</td>
<td>Dev</td>
</tr>
<tr>
<td>Wannery</td>
<td>176</td>
<td>RED</td>
<td>Cam</td>
</tr>
<tr>
<td>Warburgella rugulosa canadensis</td>
<td>176</td>
<td>PRO</td>
<td>Sil</td>
</tr>
<tr>
<td>Warrbole</td>
<td>176</td>
<td>PRO</td>
<td>Car</td>
</tr>
<tr>
<td>Warrbole (Latibole) laticampa</td>
<td>176</td>
<td>PRO</td>
<td>Car</td>
</tr>
<tr>
<td>Warrbole aello</td>
<td>176</td>
<td>PRO</td>
<td>Car</td>
</tr>
<tr>
<td>Warrbole richteri</td>
<td>176</td>
<td>PRO</td>
<td>Car</td>
</tr>
<tr>
<td>Weberides</td>
<td>176</td>
<td>PRO</td>
<td>Car</td>
</tr>
<tr>
<td>Weeksina unispina</td>
<td>176</td>
<td>PTY</td>
<td>Cam</td>
</tr>
<tr>
<td>Weesendorf</td>
<td>176</td>
<td>PHA</td>
<td>Dev</td>
</tr>
<tr>
<td>Werfartaspis cornutus</td>
<td>176</td>
<td>PTY</td>
<td>Cam</td>
</tr>
<tr>
<td>Wujiagania</td>
<td>176</td>
<td>PTY</td>
<td>Cam</td>
</tr>
<tr>
<td>Wuitangasping tingi</td>
<td>176</td>
<td>RED</td>
<td>Cam</td>
</tr>
<tr>
<td>Xenophaecropus delevas</td>
<td>176</td>
<td>ASA</td>
<td>Ord</td>
</tr>
<tr>
<td>Yiliangia serra</td>
<td>176</td>
<td>RED</td>
<td>Cam</td>
</tr>
<tr>
<td>Yunnasaspis</td>
<td>176</td>
<td>RED</td>
<td>Cam</td>
</tr>
<tr>
<td>Yunnanocephaeus</td>
<td>176</td>
<td>PTY</td>
<td>Cam</td>
</tr>
<tr>
<td>Yunnanocephaeus yunnanemesis</td>
<td>176</td>
<td>PTY</td>
<td>Cam</td>
</tr>
<tr>
<td>Zacanthoidea</td>
<td>176</td>
<td>COR</td>
<td>Cam</td>
</tr>
<tr>
<td>Zacanthoidea grubi</td>
<td>176</td>
<td>COR</td>
<td>Cam</td>
</tr>
<tr>
<td>Zacanthoidea idahoensis</td>
<td>176</td>
<td>COR</td>
<td>Cam</td>
</tr>
<tr>
<td>Zacanthoidea typicas</td>
<td>176</td>
<td>COR</td>
<td>Cam</td>
</tr>
<tr>
<td>Zelzkelle toledana</td>
<td>176</td>
<td>PHA</td>
<td>Ord</td>
</tr>
<tr>
<td>Zelzkelle torquhiae</td>
<td>176</td>
<td>PHA</td>
<td>Ord</td>
</tr>
<tr>
<td>Zettlaenus ibericus</td>
<td>176</td>
<td>COR</td>
<td>Ord</td>
</tr>
<tr>
<td>Zettlaenus wahlenbergianus</td>
<td>176</td>
<td>COR</td>
<td>Ord</td>
</tr>
<tr>
<td>Zichovaspis rugosa</td>
<td>176</td>
<td>PHA</td>
<td>Dev</td>
</tr>
</tbody>
</table>
Olenoides inflatus
Middle Cambrian - Marjum Fm. - House Range, Millard County, USA
(BPM coll.)
Enrico Bonino

was born in the Province of Bergamo in 1966 and received his degree in Geology from the Department of Earth Sciences at the University of Genoa. He currently lives in Belgium where he works as a cartographer specialized in the use of satellite imaging and geographic information systems (GIS). His proficiency in the use of digital-image processing, a healthy dose of artistic talent, and a good knowledge of desktop publishing software have provided him with the skills he needed to create graphics, including dozens of posters and illustrations, for all of the displays at the Back to the Past Museum in Cancún. In addition to his passion for trilobites, Enrico is particularly interested in the life forms that developed during the Precambrian.

Carlo Kier

was born in Milan in 1961. He holds a degree in law and is currently the director of the Azul Hotel chain. He lives in Cancún, Mexico, where he is involved in efforts to preserve the marine environment. At the age of sixteen, he began a long collaboration with Milan’s Museum of Natural History, but it wasn’t until 1970 that his true passion for trilobites began to take shape. Today, that passion has become the impetus behind one of the most important collections in the world. His tireless field research across the globe and his involvement with professionals in paleontology have given him the opportunity to describe new species of trilobites and other arthropods. His personal determination and the development of the Azul Sensatori hotel complex finally brought his dream to fruition: the Back to the Past Museum, the world’s first museum dedicated entirely to trilobites.

Richard A. Robison

Professor Emeritus

University of Kansas

With regard to human interest in fossils, trilobites may rank second only to dinosaurs. Having studied trilobites most of my life, the English version of The Back to the Past Museum Guide to TRILOBITES by Enrico Bonino and Carlo Kier is a pleasant treat. I am captivated by the abundant color images of more than 600 diverse species of trilobites, mostly from the authors’ own collections. Specimens amply represent famous trilobite localities around the world and typify forms from most of the 250-million-year history of trilobites. Numerous specimens are masterpieces of modern professional preparation.